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Abstract

Multi-Objective Optimization (MOO) �nds widespread use in several �elds including engi-

neering design problems. Most of the Multi-Objective Optimization Algorithms (MOOA)

return a set of non-dominated points spread on a non-dominated front. To solve the Multi-

Objective Optimization Problem (MOOP) completely, one needs a continuous parameter-

ization of the Pareto-optimal front. In this paper, we present a data �tting approach for

continuous parameterization of the Pareto-optimal front. Cubic B-spline basis functions

are used for �tting the data returned by some MOOA in the variable space. No prior knowl-

edge about the order in the data is assumed. An automatic procedure for detecting gaps in

the Pareto-optimal front is also implemented. The algorithm takes points returned by the

MOOA as input and returns the control points of the B-spline manifold representing the

Pareto-optimal set. Results are mapped to the objective space, thereby achieving a con-

tinuous parameterization in the objective space. Results for several standard bi-objective

and tri-objective optimization problems are shown.
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Chapter 1

Introduction

We are in a constant search of �nding optimum solutions. The necessity of making every

task and process e�cient with respect to a certain goal gives rise to the �eld of optimiza-

tion. Whether it is science, engineering, �nance, management or business, optimization is

indispensable. This is the reason that several interrelated research �elds like mathemati-

cal programming, operations research, optimal control and decision-making have come up,

all working for similar goals but on di�erent kinds of problems with di�erent approaches.

Optimization helps us �nd e�cient and competitive solutions. The applications of op-

timization are diverse. In engineering alone, all the major branches �nd applications of

optimization. For example, space craft trajectory optimization in aerospace engineering,

process optimization in chemical engineering, maximizing component life in mechanical

engineering, structure optimization in civil engineering, throughput maximization in elec-

trical engineering, etc. It is helping designers to �nd a small factor of safety leading to

economical designs. It plays a major role in cost minimization and pro�t maximization in

businesses. In short, it is everywhere.

Optimization is not a new �eld. The need has been felt since 300 BC when Euclid

found the minimal distance between a point and a line, and proved that a square has the

greatest area among the rectangles with given total length of edges. However, most of the

development in the �eld occurred in the twentieth century. Once an optimization problem

has been formulated mathematically, optimization algorithms can be used to solve the

problem. Thanks to the a�ordable high-speed computing power of personal computers,

optimization algorithms have become increasingly popular.

Optimization problems can be divided into two classes, viz. single objective optimiza-

tion problems (SOOPs) and multi-objective optimization problems (MOOPs). As the name

suggests SOOPs have a single objective, contrary to the MOOPs which have more than

one objectives. Although most of the research in the �eld of optimization has concerned

itself with single objective optimization, majority of the real-life problems have multiple

con�icting objectives. To solve MOOPs, several algorithms have been proposed in the last

decade. This thesis focuses on improving the results of MOOAs and to study common

characteristics of the solutions of a MOOP.

This chapter provides an introduction to MOO and the objectives of the thesis. In

Section 1.1 fundamentals of MOO are discussed, followed by a discussion on MOOAs in



Section 1.2. The objectives of the thesis are discussed in Section 1.3. At last, the structure

of the thesis is laid out in Section 1.4.

1.1 Multi-Objective Optimization

A

B

C

D

E

f
1

f
2

Figure 1.1: Solutions in the objective space

Multi-objective optimization entails multiple con�icting objectives for which no unique

single solution can be found. The exact solution of a multi-objective optimization problem

is often a set of trade-o� solutions. To understand this, let us consider a bi-objective

optimization problem. Both the objectives, f1 and f2, are to be minimized. Figure 1.1

shows some points in the objective space. Points A, B, C and D belong to the solution set.

These points can't be compared among themselves as they are better than each other with

respect to some of the objectives. Thus, these are the trade-o� solutions. Point E is worse

than point C and point B with respect to all the objectives and is therefore not part of

the solution set. The solution of the MOO problem is the trade-o� solutions represented

by the dashed line in Figure 1.1.

MOOP in its general form is stated as:

Minimize/Maximize fm(x) m = 1, 2, . . .M ; (1.1)

subject to gj(x) ≥ 0 j = 1, 2, . . . J ; (1.2)

hk(x) = 0, k = 1, 2, . . .K; (1.3)

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . N (1.4)

where fm, gj , hk, x
(L)
i and x(U)

i represent the objective functions, the inequality con-

straints, the equality constraints and the lower and upper bounds on the variables respec-



tively. The components of vector x represent the variables of the problem. The variables

f1

f2

x1

x2

Figure 1.2: Figure showing the variable space and the corresponding objective space. The

Pareto-optimal front and the Pareto-optimal set are both shown.

collectively constitute the variable or design space and the objectives collectively constitute

the objective space. Any point in the variable space can be mapped to the objective space

by using the function de�nition. As a reverse mapping may not necessarily exist from the

objective to the variable space, �nding the variable values given the function values is not a

trivial task. An illustration of the variable and the objective space are shown in Figure 1.2.

The shaded part shows the feasible region in both the variable and the objective spaces.

Squares and circles represent the solutions found by an optimizer in the variable space and

the corresponding objective space points, respectively while the curve represents the true

solution of the problem. Only a �nite number of points are returned by the algorithm on

the solution curve.

Points on the Pareto-optimal front are the trade-o� solutions which means no point

on the Pareto-optimal front can be improved in one objective without compromising it in

another objective. The concept of dominance is used to compare two solutions in MOO.

De�nition 1. Concept of domination

A solution `X' is said to dominate another solution `Y ' (X � Y ) if X is not worse than

Y in all of the objectives and X is better than Y in at least one of the objectives [1].

In Figure 1.1, point E is dominated by point B and point C. Points A, B, C and D

are not dominated by any other point. The variable values corresponding to these points

constitute the non-dominated set.

De�nition 2. Non-dominated set

In a set, the points not dominated by any other set member are called the non-dominated

points of that set.

De�nition 3. Pareto-optimal set

Non-dominated set of the entire search space constitutes the Pareto-optimal set.



De�nition 4. Pareto-optimal front

The image of the Pareto-optimal set in the objective space is called the Pareto-optimal

front.

In Figure 1.2, the points on the curve passing through the squares in the variable space

represent the Pareto-optimal set while the curve passing through the circles in the objective

space represent the Pareto-optimal front.

1.2 Principles of Multi-objective Optimization Algorithms

An intuitive way to solve a MOOP is to convert it into a SOOP. Weighted sum approach

[2] is based on taking a weighted sum of the objectives. Another conversion, as done in

the ε-constraint method [3], is by choosing one of the objectives as the only objective and

converting rest of the objectives into constraints for the SOOP. By varying the constraints

bounds di�erent points on the Pareto-optimal front are generated. Other classical meth-

ods like NBI [4], weighted min-max approach [5], goal programming [6, 7] and physical

programming [8] are also based on similar conversions. Most of the classical optimiza-

tion algorithms give a single point on the Pareto-optimal front in each run. Evolutionary

methods di�er from classical methods as they work on a population of points. As a result

evolutionary Multi-objective optimization (EMO) algorithms give multiple Pareto-optimal

solutions in a single run. A survey of methods to solve MOOP in engineering is done by

Marler et al. [5]. As evolutionary methods are used in this thesis to obtain initial data

points, a brief introduction to evolutionary algorithms is provided.

1.2.1 Evolutionary algorithms

Initialization Selection Generation Replacement Termination Check? Yes Stop

No

Figure 1.3: Major steps in an EOS

Evolutionary algorithms are based on Darwinian evolutionary system. The basic steps

of all evolutionary optimization systems (EOS) are shown in Figure 1.3. The key steps of

EOS are as follows: (1) Initialization of the population, (2) Selection of the member(s) to

act as parent(s), (3) Generation of o�spring from selected parent(s) and (4) Replacement

of members to create population for the next generation. After initialization; selection,

generation and replacement are carried out iteratively till a termination criteria is met.

Although detailed description on each step are required before EOS can be simulated, but



just a few steps procedure as above is su�cient to represent major EA paradigms for op-

timization. Several evolutionary MOOAs like vector-evaluated genetic algorithm (VEGA)

[9], Multi-Objective Genetic Algorithm (MOGA) [10], Niched-Pareto Genetic Algorithm

(NPGA) [11], Non-dominated Sorting Genetic Algorithm (NSGA) [12], Strength Pareto

Evolutionary Algorithm (SPEA) [13] and Pareto Archived Evolution Strategy (PAES) [14]

have been proposed to solve MOOPs. A survey of EMO algorithms is carried out by

Guliashki et al. [15] and Zhou et al. [16].

1.3 Objective and Scope

Most of the algorithms discussed in the previous section return either a single solution

or a set of solutions on the Pareto-optimal front, which is a continuous or a piecewise

continuous entity. Though one or only a few solutions may be implemented, a user may

like to see solutions well-spread on the front to aid the process of decision making. To

give a user, the �exibility of choosing any point that lies on the Pareto-optimal front, one

needs a continuous parameterization of the front. A continuous parameterization of the

front allows the user to produce points on the front at his own discretion by varying the

parameter values. Hence, well-spaced points can be produced on the front to aid the process

of decision making. Missing solutions can also be generated by this procedure. Moreover,

if this parameterization is achieved in the variable space rather than the objective space, it

will allow us to map the parameterized entity in the variable space to the objective space

by using de�nition of the objective function and thereby get a continuous parameterization

in both the spaces. This will also facilitate an easy transition from the objective to the

variable space as the parameter value associated with a solution in the variable space is

the same as its image in the objective space.

A continuous parameterization allows one to investigate the variation of variables with

parameters along the Pareto-optimal front. This helps the user in �nding interesting

common properties of the points in the Pareto-optimal set. For example some variables

may not change their values at all along the Pareto-optimal front. The objective of the

present study is to develop an algorithm to �nd a continuous parameterization of the

Pareto-optimal set. This parameterization can be used

1. to produce points on the Pareto-optimal front with discretion,

2. to facilitate transition from the objective to the variable space, and

3. to investigate the variation of variables along the Pareto-optimal front and deduce

common principles.

In this thesis, a novel data �tting method is proposed to give the continuous parame-

terization of the non-dominated set returned by the MOOA. Thus, a continuous picture is



obtained from the discrete data given by the MOOA. The data �tting procedure is carried

out in the variable space. Major contributions of the thesis are:

• An error reduction method based on KKT-error reduction is implemented to improve

the results of a MOOA.

• A clustering procedure to �nd piecewise continuous Pareto-optimal set is imple-

mented.

• A tree based data �tting procedure using B-spline basis function is proposed and

implemented, to �nd the parameterization.

• No order in input data is assumed. Principal component analysis (PCA) is used to

�nd the order in the data.

• Several standard and real-life optimization problems are used to test the method.

• Innovative design principles are found and analyzed for bi-objective problems using

the procedure.

1.4 Structure of the thesis

The thesis is structured in the following manner.

Chapter 2 covers the literature review of the methods that try to �nd a continuous

parameterization of the Pareto-optimal front. We also look at some previous methods

which don't parameterize the front but try to model the front as an intermediate step

of the optimization process. In this chapter a brief literature review of the data �tting

procedure is also provided.

Chapter 3 covers the mathematical formulation of the problem and provides a brief

background of several topics necessary for the understanding of the thesis. Regularity

and connectedness property of the Pareto-optimal front are described followed by a brief

discussion on B-spline data �tting procedure.

Chapter 4 provide details of the error reduction and the clustering steps of the algo-

rithm respectively. The procedure is outlined and examples are shown for explaining the

nuances of the procedure.

Chapter 5 gives a detailed explanation of the data �tting approach. Use of PCA to

implement the tree based data division procedure is described here. Other details regarding

the parameterization procedure and maintaining continuity are discussed in this chapter.

In Chapter 6 results for bi-objective and tri-objective standard and real-life opti-

mization problems are presented. Common properties of solutions are identi�ed and their

signi�cance is discussed.

In Chapter 7 limitations of the algorithm are presented and conclusions are discussed.



Chapter 2

Literature Review

In this chapter a brief overview of the past research relevant to the thesis is provided.

Existing algorithms that try to provide complete description of the Pareto-optimal front

are discussed and their di�erence from the algorithm proposed in this thesis is pointed out.

Methods that work on �nding common principles in solutions of MOOP are described.

Research done in the �eld of data �tting using B-spline basis functions is also presented in

this chapter.

2.1 Approaches to �nd a continuous Pareto-optimal front

A few algorithms attempt to give a continuous representation of the Pareto-optimal front

as the result of the optimization process. Steuer et al. [17] proposed continuous parametric

curves and surfaces for bi-objective and tri-objective problems using parametric quadratic

programming but their algorithm is restricted to Markovitz portfolio selection problem.

Markovitz portfolio selection problem [18] is a bi-objective optimization problem and has

one quadratic objective function and one linear objective function with linear constraints.

Their algorithm is fast and can be used for problems with large number of variables. It

works considerably faster than the traditionally used ε-constraint method in the �eld of

portfolio selection for producing points, one at a time, on the Pareto-optimal front. Their

method uses a parameter which is varied to trace out the full equation structure of the

front. The equations of all the curves (hyperbolas, and typically many) that contribute

segments to the Pareto-optimal front are derived for a precise mathematical speci�cation

of the front. The output of algorithm proposed in this thesis is similar to one proposed by

Steuer [17] in giving closed form mathematical equations for Pareto-optimal front but it

need not be restricted to Markovitz problem only. For Steuer's algorithm the parameter

is varied as part of the optimization process while our algorithm takes points as input

from some optimizer. Hence, if the optimizer is able to solve non-convex problems, the

algorithm will give closed-form equations, representing the Pareto-optimal set.

Grosan [19] proposed a Pareto Evolutionary Continuous Region Algorithm (PECRA)

to handle Pareto continuous regions. Dumitrescu et al. [20] proposed an evolutionary

approach called Continuous Pareto Set (CPS) algorithm to �nd continuous Pareto-optimal

set (and the corresponding Pareto-optimal front). In their algorithm, individuals in the

population are closed intervals or points. Mutation and crossover are used to generate new



solutions. However, both algorithms are restricted to single-variable MOOPs only.

Finding the true Pareto-optimal front by using computational grids spread out over the

variable space has been attempted by Veldhuizen [21]. By using the computational grids,

all the solutions at grid intersection are checked for Pareto-optimality. Binary coding

is used to obtain the computational grid. Binary coding restricts the search space and

hence the results are still discrete but are the best possible at a given computational

resolution. As all the points in the search space are checked for Pareto-optimality, this is

a computationally expensive method. As the number of grids are increased, computation

required also increases. Finding true Pareto-optimal front of a general MOOP is an NP-

hard problem [22]. Algorithm presented in this work can give a continuous representation

but doesn't guarantee true Pareto-optimality.

Response surface approximation (RSA) was used by Goel et.al. [23] to approximate

Pareto-optimal front. Their method gives one of the objectives as a function of other

objectives. The equation developed for the Pareto optimal front by RSA is valid only in a

limited region of the objective space. Moreover, their algorithm was tested on a problem

with continuous Pareto-optimal front. Both RSA and the algorithm proposed in this thesis

operate on points returned by some optimizer.

Dellnitz et.al. [24] use multilevel subdivision techniques to approximate a Pareto-

optimal set. They use a set-oriented approach to create tight boxes covering the Pareto-

optimal set. Their algorithm is developed as a stand-alone global optimization method

in contrast to the algorithm presented here, which is based on post-processing of points

returned by some MOOA. However, their method does not give parameterization of the

Pareto-optimal set, closed form equations of the Pareto-optimal set and variations of the

design variables along the Pareto-optimal front. Similar to our approach it also works in

the variable space rather than objective space.

Several evolutionary algorithms make use of the statistical properties of the solutions

of the current generation to create solutions for the next generations [25, 26, 27, 28].

These algorithms are known as estimation of distribution algorithms (EDAs) and have

been claimed as paradigm shift in the �eld of evolutionary computation. Though they

don't try to obtain a continuous representation of the Pareto-optimal front, they try to

model it using some stochastic model. EDAs build a stochastic model using the promising

members of the parent population and create an o�spring population based on the model.

Thus, traditional mutation and crossover operators of evolutionary algorithms get replaced

by the modeling step in EDAs. In Voronoi-based estimation of distribution algorithm

(VEDA) [25], Voronoi diagrams are used to create a stochastic model in the variable space.

Here clustering techniques are used to divided data in groups and one model is built for

each group. Principal component analysis (PCA) is used to reduce the dimensionality of

data in each group. Some EDAs try to make use of the mathematical properties of the

Pareto-optimal front. RM-MEDA models the promising region of the search space using a



probability distribution whose centroid is anM −1-dimensional manifold whereM are the

number of objectives in the problem [29]. Local PCA is used to build this model. Solutions

are sampled from the sample and the non-dominated sorting of NSGA-II is used as the

replacement step of the algorithm. Some EDAs use the hybrid strategy of using the model

in combination with the crossover and mutation operator [28]. However, these algorithms

focus on producing points on the front rather than giving a continuous picture.

2.2 Finding common design principles

Finding innovative design principles has been investigated in detail by Deb and his col-

laborators in a series of papers [30, 31, 32]. In a MOOP, only a few out of numerous

possible combination of variables are optimum. `Innovization', proposed by Deb, tries to

�nd answer to the question of what makes these points optimal. It is a post optimization

analysis of solution. The process of `innovization' produces relationships between objec-

tives, variables and constraints. These common principles can be applicable to all the

solutions or a subset of solution. Such analysis provides new in-depth knowledge about

the solutions which can be bene�cial in many ways. Optimization techniques are used to

�nd the relationships between variables, constraints, objectives or any other function by

using them as basis. This allows the process to �nd mathematical relationships that exist

between these functions. Clustering is used to identify the subsets that satisfy a common

principle.

In this thesis we use cubic B-spline functions as basis to approximate the Pareto-

optimal set. As a result we get parametric equations for the entire Pareto-optimal set.

Because we use B-splines, total number of such parametric equations depend on the number

of control points that model the B-spline. For a complicated Pareto-optimal set, many

such cubic parametric equations are generated, which makes �nding exact mathematical

relationships between variables a cumbersome task. However, parametric equations for all

the variables can be easily used to �nd qualitative relationships between the variables or

verify known relationships. We observe that most of the design principles we discover are

simple and can easily be concluded by using our procedure. This work focuses on design

changes as the designer progresses along the Pareto-optimal front rather than �nding exact

mathematical relationships between variables. The innovization process does not give a

continuous parameterization of the Pareto-optimal set.

Monotonicity analysis was done by Papalambros et al. [33] to bring out important

properties among variables for optimal solution. But the objective functions and the con-

straints need to be monotonic to the decision variables or the objective functions must be

free from one or more decision variables. Data mining and knowledge discovering tech-

niques have also been used to �nd interesting pattern in the data. Multivariate adaptive

regression splines (MARS) was used by Deb et al. in [30] in comparison with the innoviza-



tion process. Parmee et al. [34] proposed a novel method called Cluster Oriented Genetic

Algorithms (COGA) to identify high performing regions in the search space. COGA works

in the design space to rapidly restrict the domain of interest to regions of high performance.

Multi-objective COGA explores the high performing regions independently for each objec-

tive and then project them on a hyperplane to �nd the common high performance region

as well as relationships and interaction between objectives. Rather than giving a Pareto-

optimal front it focuses on �nding design space of high performance. A similar process

called activity analysis [35] uses qualitative Kuhn-Tucker conditions to strategically cut

away subspaces that it can quickly rule out as suboptimal thus allowing a numerical opti-

mization method to focus on the reduced search space.

2.3 Regularity and Connectedness

In this paper, a data �tting method is proposed to give the continuous parameterization

of the non-dominated set returned by the MOOA. Thus, a continuous picture is obtained

from the discrete data given by the MOOA. The data �tting procedure is carried out

in the variable space. The variable space can have high dimension, but the dimension

of the manifold to be �tted to the data depends on the number of objectives. It can

be shown using the Karush-Kuhn-Tucker (KKT) conditions that for smooth objective

and constraint functions, under some mild regularity conditions, the Pareto-optimal set

of an M -objective MOOP is locally at most an (M − 1)-dimensional entity (termed as

Hyposurface in this paper). This property comments on the topology of the Pareto-optimal

set which is locally connected. Also, the order of the function describing the Pareto-optimal

set in the variable space is lower than or equal to that of the function describing the

Pareto-optimal front in the objective space. This has been shown empirically for several

standard optimization problems [36]. The regularity and connectedness property has been

used by several researchers to design MOOA [37, 38, 39, 40]. Continuation methods to

�nd Pareto-optimal front are based on this property. Starting with a given set of KKT

points, continuation methods �nd new KKT points in the neighborhood and the process is

continued till the whole Pareto-optimal set is discovered. Hence, the connected set of KKT

points are found by this procedure. Predictor-corrector algorithm, which is a continuation

method was used by Shutze et al. [41] and Ringkamp et al. [42] to �nd the Pareto-optimal

set. However, these methods are local in nature and can't �nd disconnected Pareto-optimal

set. Dellnitz et al. [24] also made use of this property to approximate a Pareto-optimal

set using multilevel subdivision techniques.

We can have con�dence in the data �tting approach because a Pareto-optimal set often

consists of connected or piecewise connected points [36]. This means that, between two

close points of the Pareto-optimal set returned by the MOOA, we can �nd more points

by data �tting, which lie in the Pareto-optimal set but are not included in the output of



the MOOA. This property of connectedness has been studied by several researchers, for

example [43, 36, 44]. Also, as the dimension of the �tted entity depends on the number

of objective function, under mild regularity conditions, we can pre-determine the number

of independent parameters required to model the entity. For example, for a two objective

problem, the Pareto-optimal set can be modeled by a curve using one independent param-

eter only. To detect disconnected parts of the Pareto-optimal set for piecewise connected

Pareto-optimal set, we use a clustering procedure. To our knowledge, no study based on

regularity and connectedness has tried to �nd disconnected part of the Pareto-optimal set.

2.4 Data �tting using B-spline

Data �tting is a fundamental problem in graphics, data mining and many other application

areas. For data �tting we use cubic B-spline basis function with uniform knot vector [45].

Many methods exist for interpolation and approximation of the data points. However,

most of the methods assume some initial ordering of the data [46, 47, 48, 49, 50]. The

data that is returned by MOOAs is unorganized and can have non-uniform distribution

with noise. In an ordered data, where it is known which data point precedes the other,

several methods like chord length parameterization and the centripetal method [51, 52, 53]

exist to parameterize the data. The regularity and connectedness properties ensure that

the Pareto-optimal set lies in an ordered way on a curve, surface or a higher dimensional

entity depending on the number of objectives in the problem. The initial data is noisy

but the noise can be reduced by using some local search procedure to ensure that the

updated points are in the Pareto-optimal set. However, sometimes local search may not

be e�ective and updated data may still be noisy. Moreover, the points returned by the

MOOA population may not be in any particular sequence in the array. Thus, the data

�tting algorithm should be able to deal with unorganized noisy data. The present algorithm

assumes no order in the data and can �nd an approximation to the noisy data. It can, in

principle be extended to an M -dimensional manifold in an N-dimensional space.

A common way of parameterization is to choose the parameter value in such a way

that the Euclidean distance between the generated entity and the input data points is

minimized. Using an iterative procedure the whole entity can be modeled. This param-

eterization and its simple variants have been used by several researchers for curve �tting

[54, 55, 56, 57]. The idea extended to surface �tting has also been used by several re-

searchers [58, 59, 60, 61, 62, 63, 64]. Initial guess value of parameter plays an important

role in the �tting process. For highly non-linear �tting process a random guess may not

lead to a low �tting error. Most of the �tting procedure require the end-user to supply

a good initial parameter values. If an initial estimate is not available, it becomes impor-

tant to generate it by ordering the data. A number of approach have been developed to

solve this issue. Fang et al. [65] proposed a novel method which simulates the deforma-



tion of a perfectly elastic beam under the application of spring force for reconstructing a

smooth curve from a set of unordered and error �lled data points. Their method doesn't

need an initial parameter estimate but required end points of the data as input. Yan [66]

proposed a fuzzy curve tracing (FCT) algorithm to extract smooth curve from unordered

noisy data. Their method is based on �nding cluster centers and reordering them using

relational graphs. Liu et al. [67] developed a novel method based on stretching curves

along the tangential direction. A simple curve is placed somewhere along the point cloud

and then is made to stretch and crawl along the point cloud. Their method is restricted to

planar curves only. Goshtasby [68] proposed a novel method to �t irregularly spaced set

of points. The idea is to divide points into subsets, order points in each subset and �t a

curve through them. A potential function is constructed based on the mapped points in an

image to generate a new gray image and compute ridge contours. Then the mapped points

are ordered by their projections on the ridge contours and a �tting curve is reconstructed

from the ordered points.

Principal curves, de�ned by Hatsie and Stuetzle [69] are non-linear generalization of

principal components. They are de�ned as self-consistent smooth curves that pass through

the middle of a data cloud. They have been used in several �elds including data �tting.

Furferi et al. [70] also used PCA to order the data set. Clusters are found using PCA and

polyline is constructed joining cluster centroids. B-spline is constructed for points lying on

each polyline. The points not lying on the polyline are projected on the B-spline and their

order is used for initial parameterization. Principal components are also used in this thesis

to �nd an initial parameterization of the data. If the parameterization is not good enough

and the �t is poor, the data is divided into several nodes recursively, thus creating a tree

like structure. Quadtree-like data structures called strip tree has been used by Gregorski et

al. [71] in reconstruction of B-spline surface from scattered data points. In their method,

a bounding box is created around the data in each node and control points are found using

the data. The data �tting algorithm presented in this thesis is inspired from their work on

surface �tting, however it is more general, uses iterative �tting procedure and a di�erent

strategy of joining nodes to create smooth curves, surfaces or higher dimensional entities.



Chapter 3

Mathematical Background and

Formulations

This chapter gives the mathematical formulations and a brief background necessary for the

understanding of the thesis. Basics of MOO were discussed in Chapter 1. In this chapter,

KKT conditions are discussed, followed by discussion of regularity and connectedness prop-

erties of the Pareto-optimal set. After a brief description of B-spline basis functions, we

formulate the data �tting problem. In the end, the structure of the algorithm is described.

3.1 Karush Kuhn Tucker conditions

MOOP in its general form was stated in Chapter 1, Equation 1.1. Here, it is stated again

for easy reference.

Minimize/Maximize fm(x) m = 1, 2, . . .M ; (3.1)

subject to gj(x) ≥ 0 j = 1, 2, . . . J ; (3.2)

ht(x) = 0, t = 1, 2, . . . T ; (3.3)

x
(L)
k ≤ xk ≤ x

(U)
k , k = 1, 2, . . .K. (3.4)

where fm, gj , ht, x
(L)
k and x(U)

k represent the objective functions, the inequality constraints,

the equality constraints and the lower and upper bounds on the variables, respectively. In

this thesis, we will restrict ourselves to optimization problems with smooth objectives and

constraints. The MOOP has K variables, M objectives, J inequality constraints, and T

equality constraints.

As explained in Chapter 1, the solutions of a MOOP with con�icting objectives is a

set of points referred to as the Pareto-optimal set. The image of the Pareto-optimal set

in the objective space is called the Pareto-optimal front. For a MOOP with di�erentiable

objectives and constraints a point x∗ in the Pareto-optimal set will necessarily satisfy

the Karush Kuhn Tucker (KKT) conditions [72, 73]. The KKT conditions are stated as

following:



M∑
m=1

λm ∇fm(x) −
J∑
j=1

µj ∇gj(x)−
T∑
t=1

νt ∇ht(x) = 0 (3.5)

M∑
m=1

λm = 1;

µjgj(x) = 0, ∀j ∈ [1, . . . J ];

λm ≥ 0, ∀m ∈ [1, . . .M ];

µj ≥ 0, ∀j ∈ [1, . . . J ];

gj(x) ≥ 0, ∀j ∈ [1, . . . J ];

ht(x) = 0, ∀t ∈ [1, . . . T ].

where λ and µ represent the lagrange multipliers for the objectives and the constraints,

respectively.

A point satisfying the KKT conditions is a candidate solution for optimality. Above

conditions are necessary (under some regularity assumptions) but not su�cient conditions

for Pareto-optimality. All points on the Pareto-optimal front (and hence in the Pareto-

optimal set) will satisfy the KKT conditions. However, as the KKT conditions are not

su�cient conditions for Pareto-optimality, not all KKT points are optimal points.

For an unconstrained single objective problem, it can be veri�ed that KKT conditions

reduce to ∇f = 0 which are �rst order necessary conditions for optimality. There are cer-

tain regularity assumptions on constraints for KKT conditions to hold true at the optimal

point. These are called constraint quali�cations. If the constraints satisfy the constraint

quali�cation the KKT conditions are valid. Various authors have given several constraint

quali�cations [74, 75]. Linear independence of constraints quali�cation (LICQ) is the most

popular constraint quali�cation. Let I = {j|gj(x) = 0} denote the set of active inequality
constraints. If ∇gj(x) , ∀j ∈ I and ∇ht(x), ∀t ∈ [1, . . . T ] are linearly independent then

LICQ are met.

3.2 Regularity and Connectedness

It has been observed that there is a regularity in the distribution of points in the Pareto-

optimal set. Using the KKT conditions, regularity in the Pareto-optimal front solutions

can be inferred under certain smoothness conditions. Regularity implies that for an M -

objective problem, under certain conditions [76], the Pareto-optimal front is at most an

(M − 1)-dimensional piecewise continuous manifold in both the objective and the variable

space. This is an important property which has mostly gone unnoticed in the EMO �eld

[29]. Here, this property is used to ensure that for an M -objective problem we need M − 1

parameters to parameterize the Pareto-optimal set.



A closer look at the KKT conditions (Equation 3.5) reveals that there are K+J+T+1

equations in K + J + T + M variables. This can be written in form of a vector function

G(x, λ, µ, ν) as shown below.

G(x, λ, µ, ν) =


∑M

m=1 λm ∇fm(x) −
∑J

j=1 µj ∇gj(x)−
∑T

t=1 νk ∇ht(x)

µjgj(x)

ht(x)∑M
m=1 λm − 1

 (3.6)

For a point satisfying KKT conditions, G(x, λ, µ, ν) = 0. By implicit function the-

orem, under some smoothness conditions the level set of G(x, λ, µ, ν) is a (M − 1)-

dimensional manifold. A detailed discussion on regularity conditions is done by Hillermeier

in [76].

Connectedness implies that the members of the Pareto-optimal set and front are con-

nected in a topological sense. If the Pareto-optimal front or the Pareto-optimal set consists

of a �nite number of disconnected regions, it is called loosely connected set [36]. It has

been shown that Pareto-optimal set is connected if all the objective functions are convex

[44]. The convexity condition can be relaxed for several kinds of problems. For a de-

tailed description of connectedness, see [44, 43]. To �nd the disconnected Pareto regions, a

clustering process is suggested. Connectedness is important as it provides con�dence that

the data �tting procedure will be able to �nd members of the Pareto-optimal set in the

neighborhood of already known Pareto-optimal set members.

An M -dimensional manifold in a K-dimensional space represents a curve for M = 1, a

surface for M = 2 and a hypersurface for M = K − 1. `Manifold' is used as a generalized

term for the intermediate dimensions. The term `manifold' has a speci�c de�nition in

mathematics and topology, and can not be used casually. For the lack of any other well-

established term, we de�ne a term Hyposurface as a substitute to the term `manifold'.

De�nition 5. An M-dimensional hyposurface in an N -dimensional space (1 ≤ M < N)

is an entity which requires M independent parameters for its complete description.

Thus, an 1-d hyposurface is a curve and a 2-d hyposurface is a surface. From here on

the use of the term `manifold' will be avoided and instead of referring data �tting as curve

or surface �tting, general term hyposurface �tting will be used.

3.3 Hyposurface Fitting

Cubic B-spline basis functions with uniform knot vector are used for modeling the hypo-

surface. They provide a convenient matrix notation for hyposurface �tting. Control points

of B-spline hyposurface provide a good global and local control. The number of control



points (Ncp) required to model the B-spline hyposurface depend on the dimension of the

hyposurface and the order of the B-spline basis functions used for the modeling. For an

M -dimensional hyposurface, modeled by B-splines, in a K-dimensional space, any point

on the surface can be given by

xj = F (u1, u2, . . . , uM , Pj), ∀ j ∈ [1, . . . , K], (3.7)

where F is the B-spline basis function which takes parameters (u) and control points (P)

as the arguments, x is a K-dimensional vector representing a point on the hyposurface,

u1, u2, . . . , uM represent the M parameters corresponding the point x that model an M-

dimensional hyposurface, Pj represent the jth column of anNcp×K matrix of control points

modeling the hyposurface. Detailed theory of B-spline curves and surfaces is covered in

Mortenson [45].

Here, the data �tting problem is de�ned. Given a set of data points, x1, x2,. . . ,xN,

where each data point is a K-dimensional vector (xi = [xi1 xi2 . . .xiK ]T ), and a function

f(ui1, ui2, . . . , uiM , Pk) : RM+Ncp → R, where uij ∈ R ∀ j ∈ [1, . . .M ] are the M

parameters representing the ith point on the M−dimensional hyposurface in space and

Pk is the k-th column of an NcpXK dimensional matrix of control points that models the

hyposurface, the problem of hyposurface �tting is to �nd the appropriate values of P and

parameters ui ∈ RM corresponding to each data point, i such that f(ui, Pj) = xij , ∀i ∈
[1, . . . , N ], and ∀j ∈ [1, . . . ,K]. The problem of hyposurface �tting inherently leads to a

least square problem which is mathematically stated as follows:

Minimize
N∑
i=1

(f(ui,Pj)− xi,j)2 , ∀j ∈ [1, . . . ,K] . (3.8)

The problem, stated in other words is the minimization of the distance between the

input points X and the hyposurface modeled by the function f , where the parameters

assigned to each data point (ui) and the control points (P) that model the hyposurface

are the unknowns.

The complete problem of parameterizing the Pareto-optimal set can be stated as fol-

lowing:

Problem 1. Given the non-dominated set of points of an M -objective MOOP in N vari-

ables, returned by some MOOA, �nd the control points and the parameterization which

model the Pareto-optimal set of the given MOOP.

3.4 Structure of the algorithm

We propose an algorithm to solve the above problem. The proposed algorithm can be

divided into two major parts. First part is a data pre-processing step where the given input

data (X) undergoes an error reduction step and a clustering step. In the error reduction



step, KKT-error of the data is reduced. Clustering is used to �nd the disconnected parts

of the Pareto-optimal set. The second part of the algorithm deals with the hyposurface

�tting. Figure 3.1 shows the major steps of the algorithm pictorially.

KKT-error Reduction Clustering Hyposurface Fitting Control PointsMOOP Data

Figure 3.1: Main steps of the algorithm

In Chapter 4, data pre-processing steps are explained followed by description of hypo-

surface �tting in Chapter 5.





Chapter 4

Data Pre-processing: KKT-error

reduction and Clustering algorithms

In this chapter two important parts of the algorithm, KKT-error reduction and Clustering

are discussed. These are termed as pre-processing steps as the next step of the algorithm

is the hyposurface �tting where actual data �tting takes place.

4.1 KKT-error Reduction

4.1.1 Motivation

As statistical methods for approximating the Pareto-optimal set are used in this study, it is

important that the input data has a low error. Lower the error, better will be the modeled

Pareto-optimal set. Non-dominated points returned by certain MOOAs like the EMO

algorithms, may not necessarily be Pareto-optimal. In NSGA-II [12], which is a popular

EMO algorithm, population quickly gets close to the Pareto-optimal front and all the

members in the population become non-dominated after a few generations only. These non-

dominated members may have some Pareto-optimal as well as some sub-optimal solutions.

It becomes di�cult for this non-dominated population to generate better solutions. As

NSGA-II is dependent on crossover and mutation only, to create new solutions, the chances

of creating better solutions reduce as such solutions reduce in space because of the proximity

of the current solutions to the Pareto-optimal front. Also, because of diversity preserving

measures like crowding distance, any Pareto-optimal solution that is obtained, may be lost.

This may lead to slow convergence to the true Pareto-optimal front. This problem is called

Pareto drift and has been studied by Goel et al. [23]. One possible solution suggested by

them, is the use of an archive to store all the non-dominated points. Another remedy is

the use of local search on the sub-optimal points to take them to the Pareto-optimal front.

We use local search on the sub-optimal points returned by NSGA-II algorithm. As local

search is computationally expensive, not all input data is local searched. First an error

estimate is found indicating the proximity of points to the Pareto-optimal front. Local

search is conducted only for members with high error estimate.



4.1.2 KKT-error calculation

KKT-error (ε) is de�ned to estimate the error in the input data. Using the KKT conditions

de�ned in Equation 3.5, we de�ne the KKT-error for an input point Xi as:

ε =‖
M∑
m=1

λm
∇fm(Xi)

‖ ∇fm(Xi) ‖
−

J∑
j=1

µj
∇gj(Xi)

‖ ∇gj(Xi) ‖
−

T∑
t=1

νt
∇ht(Xi)

‖ ∇ht(Xi) ‖
‖2 (4.1)

At a point in space satisfying the KKT conditions, the vectors λ∇f , µ∇g and ν∇h are

in equilibrium and are linearly dependent. The KKT-error term (ε) is a measure of the

degree of imbalance in these vectors at every input point. The degree of imbalance does

not depend on the size of these vectors, therefore, unit vectors ∇fm(Xi)
‖∇fm(Xi)‖ ,

∇gj(Xi)
‖∇gj(Xi)‖ and

∇ht(Xi)
‖∇ht(Xi)‖ can be used. This has the advantage of making ε independent of the scale of the

objectives, hence, permitting the use of a common threshold error value (εthresh) for all

the problems.

At a point on the Pareto-optimal front ε = 0. The problem is to �nd the value of

vectors λ, µ and ν such that ε is minimized. To calculate the error, the bounds on the

variables are converted into inequality constraints. Active constraints are found and their

gradients are calculated. For weights, λ 6= 0 and each λm ≥ 0, we do a normalization by

using
∑M

m=1 λm = 1. The problem can be mathematically de�ned as:

Minimize ε (4.2)

such that
M∑
m=1

λm = 1 (4.3)

λm ≥ 0 ∀m ∈ [1, . . .M ] (4.4)

µj ≥ 0 ∀j ∈ [1, . . . J ] (4.5)

νt ≥ 0 ∀t ∈ [1, . . . T ] (4.6)

Above problem is quadratic in λ, µ and ν. We use SQP implemented by MATLAB

to solve the above optimization problem. Minimum value of ε for each input point, as

returned by SQP, is stored and compared with a minimum threshold value (εthresh). Points

for which ε > εthresh are tagged as erroneous points and a local search is conducted for

them, to reduce the KKT-error.

4.1.3 Local Search

Local search based on minimizing an achievement scalarizing function (ASF) [77] is con-

ducted. ASF has been successfully used by Deb et al. [78] to conduct the local search. ASF

uses a reference point z, which is a vector of objective function values, at the erroneous

point and �nds the solution on the Pareto-optimal front close to the reference point. The

single-objective problem solved to get a point on the Pareto-optimal front is de�ned as:



Minimize
M

max
i=1

[wi (fi(x) − zi)], (4.7)

such that x ∈ S, (4.8)

where w is a vector of weights used to scalarize the function and S is the feasible search

space. The reference point z helps to focus on a particular part of the Pareto-optimal front

where as the weight vector provides the �ner tradeo�s between the objectives leading to

convergence on a particular point on the Pareto-optimal front [79]. The erroneous input

point for which local search is to be conducted is taken as the reference point. The λ vector

found during the process of KKT-error calculation is used to calculate the weights for the

local search procedure. wi = λi
upbdi −lwbd

i

is used as weight for each objective function where

upbdi and lwbdi are the upper and lower bounds of the ith objective function. Max function

in the problem de�nition causes the problem to be non-smooth. The problem is converted

into an equivalent smooth problem and is solved using SQP routine of MATLAB. The

smooth variation of the problem is shown in Equation 4.9.

Minimize ε, (4.9)

Subject to wi(fi(x)− zi) ≤ ε, ∀i ∈ [1, . . . , M ] ,

x ∈ S,

ε ≤ 0.
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(a) Before KKT-error Reduction
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(b) After KKT-error Reduction

Figure 4.1: KKT-error reduction leads to a better organization of points

Figure 4.1 shows the KKT-error reduction for `POL' problem. Figure 4.1a shows the

points before the KKT-error reduction. In Figure 4.1a, the points on the left seem to have



a lower error as a curve can be visualized to �t through these points, but the points on

the right are highly unordered and no curve can �t through these points with a low �tting

error. After KKT-error reduction points have arranged themselves in a better order for

both the clusters. A regularity in the points was expected and the arrangement of points

in an orderly fashion after KKT-error reduction shows the same.

4.2 Clustering

The Pareto-optimal set of a MOOP may be disconnected. To take care of this, a clustering

procedure is carried out to �nd the gaps that may exist in the Pareto-optimal set. The

clustering process divides the corrected input data intoK clusters where K is the number of

disconnected Pareto regions that exist. The procedure should give exactly the same number

of clusters as the number of disconnected Pareto regions. For example, for a connected

data the procedure should not divide data at all, for a problem with two disconnected

Pareto regions the cluster should return exactly two sets of data.

As the number of clusters that may exist are unknown, the clustering process is carried

out in three steps viz. approximate estimate of the number of clusters, K-means clustering

based on the estimate and the combination of clusters which are close to each other. Figure

4.2 pictorially shows this process.

Estimate Number

of Clusters
Corrected Input Data K-means Clustering Merging Clusters Clustered Data

Figure 4.2: Pictorial representation of clustering process

4.2.1 Estimating the number of clusters

As the number of clusters are unknown subtractive clustering [80] is used, initially, to �nd

an initial estimate of the number of clusters and cluster centers. Subtractive clustering is

a fast, one-pass method to determine the number of clusters and cluster centers in a set

of data [81]. Subtractive clustering process assigns a cluster potential index to each data

points which measures the potential of a data point to be a cluster center. Initially the

point with the highest cluster potential index is chosen as the �rst cluster center after which

the index is updated. The process continues till a termination criteria is matched. Suppose

the data set to be clustered has N data points, X1, X2, . . . , XN in a K-dimensional space.

Cluster potential for each point is calculated as

Pi =
N∑
n=1

exp

(
−‖Xi − Xn‖

(ra/2)2

)
(4.10)



where ra represent the radius of in�uence corresponding to the cluster center Xi. The

points beyond the radius of in�uence don't signi�cantly contribute to the potential index.

The point (X∗) with the highest cluster potential index (P ∗) is marked as cluster center

and potential for all points is then updated as

Pi = Pi − P ∗ exp

(
−‖Xi − X∗‖

(rb/2)2

)
, (4.11)

where rb is a number that de�ne the radius of in�uence of X∗ on the potential of other

data points. The process is iteratively repeated till some termination criteria is reached.

4.2.2 K-means Clustering

Subtractive clustering gives us only an approximate estimate of the number of clusters

in the data set and doesn't associate a cluster with every data point. Moreover, the

cluster center found by subtractive clustering may not not be as good as those by K-

means clustering [82]. Therefore, the cluster centers and number of clusters returned by

subtractive clustering are fed as initial center estimates for K-means clustering.

K-means clustering, as the name suggests, is used to partition N member data set

into K clusters where K is an input argument. Given N data members, X1, X2, . . . , XN

and K initial cluster centers, c1, c2, . . . , cK , the problem is to partition data in K sets,

S1, S2, . . . , SK , such that for each set within cluster variance is minimized. The function

to be minimized is

min

K∑
i=1

∑
Xj∈Si

‖Xj − Ci‖2 (4.12)

where Ci is the centroid of ith cluster. At every iteration, the centers C and the data

members associated with each set are varied, till the function is minimized. Each data

member is assigned a closest cluster center, leading to Voronoi partition of the data [83].

Hybridizing subtractive clustering with K-means clustering gives good results when

initial number of clusters are unknown. Use of such hybridized clustering procedures has

been advocated by several researchers [84, 82]. MATLAB routines for subtractive clustering

and K-means clustering are used in this work.

4.2.3 Merging Clusters

The above clustering procedure can return more than the expected number of clusters.

Therefore, a cluster correction step is carried out in which clusters with small minimum

distance between them are combined together to form a larger cluster. The threshold for

the minimum distance is decided on the basis of the bounds of the data. As the main

concern here is to divide data into clusters and cluster centers are not important, taking a

union of the sets to be merged solves the problem.
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Figure 4.3: Erroneous and corrected clustering

One such situation is shown in Figure 4.3a. Here initial clustering step gives eight

clusters when only one was expected. The cluster correction step joins all the clusters to

give a single large cluster (Figure 4.3b). Figure 4.4 shows the clustering results for `POL'

problem. Two clusters are identi�ed by the clustering process here. The next step of the
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Figure 4.4: Clusters returned by clustering process for `POL' problem

algorithm is the Hyposurface �tting which is discussed in the following chapter.



Chapter 5

Hyposurface Fitting

Next step after KKT-error reduction and clustering is hyposurface �tting. In this chapter

a detailed description of hyposurface �tting procedure is made. Cubic B-splines are used

as basis functions to describe the hyposurface. The process of �tting is an iterative two-

step process. The �tting process includes several steps like �nding outliers in the data and

assigning initial parameter values, all of which are explained in this chapter. At the end,

joining of hyposurface segments together with C2 continuity is discussed.

5.1 Uniform cubic B-spline basis function

In Section 3.3, the problem of hyposurface �tting was discussed through equation (3.8).

For uniform open cubic B-spline data �tting, f(ui,Pj) can be de�ned by using a convenient

matrix notation [45]. For example, for 1-d hyposurface

f(ui,Pj) =
[
u3i1 u2i1 ui1 1

]

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pi+2,j

 , (5.1)

where i ∈ [1, . . . N ] and j ∈ [1, . . .K] where N is the number of data members of the node

and K is the dimension of the data. Similar matrix notation can also be written for a 2-d

hyposurface.

The advantage of using B-spline functions is that they can provide a good local and

global control on the modeled hyposurface by varying the control points. A cubic B-spline

modeled hyposurface consists of composite sequence of hyposurface segments connected

with C2 continuity. Every control point models a few segments of the B-spline hyposurface.

Each segment of the B-spline is controlled by (t+ 1) control points, where t is the degree

of the polynomial de�ning a B-spline segment. For cubic B-spline segments, every control

point has in�uence on four segments, and conversely every segment is in�uenced by four

control points.



5.2 Hyposurface �tting procedure

Given N data points, u and P are the unknowns for the minimization problem (3.8). The

problem for B-spline curves can be stated as:

argmin
u,P

‖
K∑
j=1

N∑
i=1

[
u3i1 u2i1 ui1 1

]

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− xij‖2, (5.2)

subject to 0 ≤ uij ≤ 1, ∀i ∈ [1, . . . N ], j ∈ [1, . . .K].

(5.3)

Similar problem formulation can also be stated for B-spline surfaces and higher dimensional

hyposurfaces. The problem is linear in control points P and non-linear in parameters u.

Starting with a good guess for u values, an iterative procedure is used to �nd the unknowns

that minimize the error function . The iterative procedure consists of following two steps:

1. Finding the control points: Keeping the parameters values �xed �nd the optimal

control points that minimize the error.

2. Updating the parameters: Keeping the control points found in previous step �xed,

�nd the parameter values that minimize the error.

Both steps are repeated till either the error is reduced below the �xed threshold or

maximum number of iterations are reached. If the error is large, the data is subdivided

into several nodes using a full k-way tree approach. A full k-way tree is a rooted tree in

which each node other than the leaf nodes has exactly k children. Hyposurface �tting is

done during the process of tree creation, using the above two-step iterative process, with

acceptable data �tting leading to leaf node creation. The procedure for tree building goes

as follows. Initially all the data is in the root node of the tree. Hyposurface �tting takes

place for the data in the node. If the �t is not acceptable, the node is further divided into

2M children nodes where M is the dimension of the hyposurface. For every child node

the above process is recursively repeated. At the end of the recursion, hyposurface model

stored in every leaf node is joined together to give a continuous or piecewise continuous

hyposurface.

See Figure 5.1a for an example of a 2-way tree. Here, the initial �t for the data in the

root node had an error greater than the threshold. Therefore, the data was divided into

two nodes, child 1 and child 2. Fitting for the data in child 1 node was acceptable, so no

further subdivision takes place and child 1 becomes the leaf node. For node child 2, �tting

was still not good and subdivision of the data in further two children nodes: child 3 and



child 4, takes place. Fitting for these two nodes is satisfactory and they become the leaf

node. Figure 5.1a shows a �owchart of the algorithm.

Root Node

Child 1 Child 2

Child3 Child4

(a) 1-way tree

For the data in each node, several steps are carried out for hyposurface �tting. Figure

5.2 shows a �owchart of these steps. A description of these steps follows.

5.2.1 Finding Outliers

The purpose of this subroutine is to �nd those data members in the node, which are

dramatically di�erent from the rest of the data members in the same node. An archive of

outliers is maintained, which are added to the members of the current node. After this, the

centroid of the data is found. Data members which lie more than three times the radius

distance from the centroid are deleted from the current node and are stored as the new

updated archive. The data members which are outliers for one node may represent valid

members for other nodes. This process ensures that no information is lost.

5.2.2 Principal Component Analysis

The next step is to perform the principal component analysis (PCA) of the data members

in the node. The aim of doing PCA is to �nd an initial parameterization of the data.

PCA helps in �nding a new basis system in which the covariance between the variables

is minimized, i.e. the covariance matrix becomes diagonal in the new basis system. The

problem is to �nd a linear transformation, L, such that the data points (X) after trans-

formation (Y) have a diagonal covariance matrix. Find a orthonormal matrix L such that

Y = LX and covY = 1
N−1YYT, is diagonalized. It can be mathematically shown that

the principal components of the data matrix X are the eigenvectors of matrix XXT [85].



Start

Input data in root node

Is tree creation complete?

No

For each node repeat

fitting step recursively

Yes

Stop

Hyposurface fitting

Join hyposurfaces stored

in leaf nodes

(a) Flowchart of the algorithm

Figure 5.1



Hyposurface Fitting

Find outliers

Perform PCA

Find number of

Control points

Find initial

parameterization

Find control points

Update parameterization

Is the fit acceptable or

max iterations reached?

Is the fit acceptable? YesNo

Divide data in 2M nodes Store control points for the model

Return Return

No

Yes

Figure 5.2: Flowchart showing the hyposurface �tting procedure



The principal directions are sorted according to the corresponding eigenvalues in a

descending order and the data is projected along each of the �rst M principal directions.

Scaling the projected data in [0, 1] provides a good estimate of the initial parameterization.

It is important that all the neighboring nodes have similar orientation of the directions

returned by the PCA, as it helps in maintaining a proper continuity in the parameterization

necessary for joining the modeled segments with C2 continuity, at the end. To ensure this,
the sign of the dot products of eigenvectors of the parent node and the child node is checked.

If the sign is negative, direction for the child node is �ipped. This process ensures that the

parent and the children are similarly oriented.

PCA is also used to decide the number of control points (m) in each direction for

the B-spline hyposurface. Total number of control points are �xed as some percentage

of the number of data members in each node. These control points are divided between

each of the M orthogonal directions in proportion of the eigenvalue associated with the

corresponding eigenvector.

5.2.3 Iterative hyposurface �tting

The steps for �nding the control points and parameter updation are iteratively repeated

to reduce the error, as described earlier. The problem of �nding the control points for

�xed parameterization is a linear least square problem with linear constraints and is solved

using SQP routine of MATLAB. The linear constraints represent the bounds on the control

points. These bounds are decided depending upon the range of input data and ensure that

the hyposurface is restricted in space. In the next step, the control points found in the

previous step are �xed and the non-linear problem in unknown parameters is solved to

�nd the updated parameter values. The iterations of these two steps end if the error value

becomes small or the maximum number of iterations are reached. If the error value is small,

the control points, corresponding parameterization, and the number of control points for

the current node are stored, otherwise data members of the current node are subdivided

into 2M nodes.

5.2.4 Joining Hyposurface segments

The k-way tree creation process results in discontinuous segments modeled using B-spline

basis functions stored in the leaf nodes of the tree. Next step is to join together these

segments to create a C2 continuous hyposurface. The two step, iterative hyposurface

�tting method, described above, is used for modeling the whole hyposurface in one go. To

model a hyposurface using this iterative procedure, a good initial parameterization and

total number of control points necessary for modeling are required. A parameterization

as well as the number of control points required for modeling every segment is stored in

the leaf nodes of the k-way tree. The sum of these control points serves as the number of



control points required to model the complete hyposurface. Scaling the parameterization

stored in each node in the required range, based on the position of node in the tree an

initial parameterization for the data is worked out. The iterative procedure for the error

reduction is now used to �nd the control points, which model the whole hyposurface. The

iterations are carried till the threshold error is not satis�ed. At the end of this process we

get a C2 continuous hyposurface whose parametric equation is known to us.

Figure 5.3 shows the steps of the algorithm for the data points in the �rst cluster

for the `POL' problem. Figure 5.3a shows the data in the root node. No outliers were

found in the data. Figure 5.3b shows the initial �tting. As the error value for this �t is

greater than the threshold error value, the data is divided into two nodes. Figure 5.3c

shows the subdivided data in the children nodes. Figure 5.3d shows the data �tting for

child node 1. This �tting is only slightly better than the previous �t and does not satisfy

the threshold error and so the node is further divided into children nodes. As a result,

after several subdivisions, a binary tree is created with the level of a leaf node indicating

the intricacy of the features captured by it. Subsequent Figures show the progress as the

data is subdivided till an acceptable �t is found in Figure 5.3f. Figure 5.3g shows the

discontinuous segments after the tree creation is complete. Finally the segments are joined

together to give a C2 continuous curve as shown in Figure 5.3h.
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(a) Root node data
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(b) Initial Fit
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(c) Child node data
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(d) Fitting for child node data
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(e) Further subdivision and �tting
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(f) Acceptable �tting for a leaf node
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(g) Segments �tting data in leaf nodes
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(h) Segments joined together

Figure 5.3: Fitting Algorithm



Chapter 6

Results and discussion

To show the e�cacy of the model, the algorithm is tested on several bi-objective and tri-

objective problems. A problem set that covers unconstrained and constrained standard

optimization problems as well as two engineering design problems is considered. Following

standard MOOPs are used: FON, ZDT2, ZDT3, POL, OSY, DTLZ1, DTLZ2 and DTLZ7

[1]. Two engineering design problems, a two bar truss design problem and a cutting pa-

rameter selection problem for machining, are considered. For all of these problems both

Pareto-optimal front and Pareto-optimal set are (M − 1)-dimensional hyposurface. Some

special kind of ill-conditioned problems for which this is not true are not considered in this

study. A class of ill-conditioned problems is discussed by Zhou et al. [86].

6.1 Parameter values

The input points are returned by NSGA-II. NSGA-II is run with population size of 400 for

400 generations for the bi-objective problems and the results are passed to the algorithm

as the input data. For tri-objective problems population size of thousand is run for 800

generations. Threshold value of the KKT-error is �xed at 10−4. If the KKT-error is greater

than the threshold, a local search is conducted using SQP routine of MATLAB. Maximum

function evaluations for SQP are �xed to thousand. For the subtractive clustering process,

radii of in�uence is �xed to 0.15. For merging clusters, the threshold distance between the

two clusters is dependent on the length of body diagonal of the hypercube enclosing the

data. The number of the control points that model the hyposurface is �xed as one-tenth

of the number of data members stored in the node.

The equation of the B-spline curve and surface is given in the form of a matrix equation.

For a cubic B-spline curve modeled by Ncp number of control points, there are Ncp − 3

number of cubic segments. These segments are represented as

xi(u) =
[
u3 u2 u 1

]
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Here pi is a row vector that represents the co-ordinates of the ith control point in space.

For equation in this form, for each segment the parameter u ∈ [0, 1]. To show the �nal



result the whole curve can be reparameterized to u ∈ [0, 1], so that each point of the curve

is identi�ed by a unique parameter value. Similar representation for Surface can also be

written. The control points for each test problem are shown in an appendix A at the end.

6.2 Standard Multi-objective Optimization Problems

In this section results for standard optimization problems are provided. Some of the

standard problems have scalable number of variables. For such problems, results with

low as well as high number of variables are shown. The problems cover constrained as

well as unconstrained problems. MOOPs with disconnected Pareto-optimal front are also

considered.

6.2.1 FON problem

FON is a two objective problem with n-variables. We show the results for n = 3 for better

visualization of solutions in the objective and variable space. The problem de�nition is

given as following:

Minimize f1(x) = exp(−Σ3
i=1(xi − 1/

√
3)2), (6.1)

Minimize f2(x) = exp(−Σ3
i=1(xi + 1/

√
3)2),

Subject to − 4 ≤ xi ≤ 4, i = 1, 2, 3.

Figure 6.1 shows the results for the FON problem. Figure 6.1a shows the input data set,

which is updated to Figure 6.1b by the KKT-error reduction technique. The KKT-error

reduction routine reduces the error in the data and now the data is better organized for

curve �tting. Average KKT-error reduced from 9.4 × 10−3 to 1.73 × 10−7. Figures 6.1c

and 6.1d show the Pareto-optimal set and the Pareto-optimal front in the variable and the

objective space, respectively. The Pareto-optimal front is obtained by mapping the �tted

curve to the objective space. 15 control points model the B-spline curve. Thus, there are

12 cubic segments modeling the Pareto-optimal set. Matrix of control points modeling

the Pareto-optimal set and the parametric equation of the curve are given in appendix A.

Parameter values of points in the Pareto-optimal set, reparameterize to [0, 1], are shown

on their respective image in the objective space in Figure 6.1d. This makes moving from

the objective space to the variable space easy. Thus, one can easily �nd variable values

corresponding to any point on the Pareto-optimal front regardless of presence of that point

in the GA population. Also, the parameter values allows the user to choose any point on

the front. From the curve, it can be interpreted that there are linkages in the variables.

This means that to move along the Pareto-optimal front one needs to increase all the

variables simultaneously. From the parametric equation of the curve, it can be inferred

that x1 = x2 = x3 at any point in the Pareto-optimal set.
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Figure 6.1: Results for 3 variable `FON' problem



6.2.2 ZDT2

ZDT2 has a non-convex Pareto-optimal front. De�nition of the n-variable ZDT2 problem

is as follows:

Minimize f1(x) = x1, (6.2)

Minimize f2(x) = g(x)h(f1(x), g(x)),

Where g(x) = 1 +
9

n− 1

n∑
i=2

xi,

h(f1, g) = 1− (f1/g)2,

Subject to 0 ≤ xi ≤ 1,∀i ∈ [1, . . . , n].

First the results of a three-variable ZDT2 problem are shown followed by those for a 30-

variable problem. Figure 6.2a shows the initial input and the corrected data for the ZDT2

problem. The red points show the corrected data. We can see that the data after error

correction is much more organized and lies on a straight line. Figure 6.2b shows the curve

�tting for the Pareto-optimal set. All variables except x1 are close to zero, while x1 takes

all values from 0 to 1. These values are same as those shown by Deb et al. [1]. Figure

6.2c shows the image of the Pareto-optimal set in the objective space. Figure 6.3 shows

the Pareto-optimal front for a 30-variable ZDT2 problem. The Pareto-optimal set for a

30-variable ZDT2 problem can not be shown on a plot due to the high dimensions of

the variable space. However, we can see that the Pareto-optimal front of a 30-variable

ZDT2 problem is similar to its three-variable counterpart. Control points and parametric

equation of the modeled Pareto-optimal set are shown in Appendix A.
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Figure 6.2: Results for three-variable `ZDT2' problem
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6.2.3 ZDT3

De�nition of the n-variable ZDT3 problem is as follows:

Minimize f1(x) = x1, (6.3)

Minimize f2(x) = g(x)h(f1(x), g(x)),

Where g(x) = 1 +
9

n− 1

n∑
i=2

xi,

h(f1, g) = 1−
√
f1/g − (f1/g)sin(10πf1),

Subject to 0 ≤ xi ≤ 1, ∀i ∈ [1, . . . , n].

ZDT3 has a number of disconnected Pareto-optimal fronts. First the results for a three-

variable ZDT3 problem are shown followed by those for a 30-variable problem. Figure 6.4a

shows the initial input and the corrected data for ZDT3 problem. Several points with high

error values have been corrected and the corrected data is better organized for all the �ve

disconnected Pareto-optimal sets. Average KKT-error reduced from 7.18× 10−4 to 5.24×
10−8. The clustering routine identi�ed �ve clusters in the corrected data. Figure 6.4b shows

the curve �tting for the Pareto-optimal set. Curve �tting is carried out, independently, for

each of the clusters, as a result we get �ve di�erent parameterizations. Figure 6.4c shows

the image of the Pareto-optimal set in the objective space. From Figure 6.4b it can be

inferred that all the points in the Pareto-optimal set have all variables, except x1, close

to zero. x1 does not take all values in [0, 1], it consists of �ve disconnected parts which

leads to a disconnected Pareto-optimal front. The exact values of control points and the

parametric equation of the modeled Pareto-optimal set for each cluster, refer to appendix

A.

We can not show the Pareto-optimal set for a 30-variable ZDT3 problem. The Pareto-

optimal front with parameter values for the 30-variable problem is shown in Figure 6.5.
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Figure 6.4: Results for three-variable `ZDT3' problem
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Figure 6.5: Pareto-optimal front for 30-variable `ZDT3' problem



6.2.4 POL

`POL' problem has a non-convex and disconnected Pareto-optimal front. The problem is

de�ned as following:

Minimize f1(x) = [1 + (A1 −B1)
2 + (A2 −B2)

2], (6.4)

Minimize f2(x) = [(x1 + 3)2 + (x2 + 1)2],

Subject to − π ≤ x1, x2 ≤ π,

Where A1 = 0.5sin1− 2cos1 + sin2− 1.5cos2,

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 0.5 cos 2,

B1 = 0.5 sinx1 − 2 cosx1 + sinx2 − 1.5 cosx2,

B2 = 1.5 sinx1 − cosx1 + 2 sinx2 − 0.5 cosx2,

Results for this two-variable problem are shown in Figure 6.6. The KKT-error reduction

routine reduces the error in the input points and provide better structure to the input data.

The KKT-error reduces from 1.704×10−2 to 3.768×10−6. The clustering procedure detects

two clusters as both Pareto-optimal set and Pareto-optimal front are disconnected. The

Pareto-optimal set has two parts A and B, their mapping in the objective space along with

the parameter values is shown in Figure 6.6d as A and B. Exact values of control points

for both parts are shown in appendix A.

Variation of variables x1 and x2 with parameter u is shown in Figure 6.7. For part A

of the front x1 value increases initially and then becomes constant at variable value of 1.

Variable x2 however rises continuously from value of 1.57 to 2. For the part B of the front,

x1 remains constant for most part of the front at a variable value of −3.14, indicating that

front occurs at the lower bound for x1. Variable x2 rises from −1 to 0.71. We observe that

for both parts of the front, x2 is greater than x1. Interesting properties of the solutions

revealed from the above analysis are enumerated:

1. Part B of the front occurs at the lower bound of variable x1

2. Variable x2 is greater than variable x1 for the whole front

3. Variable x2 always increases as we move along the front.

6.2.5 DTLZ1

DTLZ test problems are scalable test problems [87]. Results for a three-objective and

three-variable DTLZ1 problem with linear Pareto-optimal front are presented here. As the

number of objectives are three, the Pareto-optimal front and Pareto-optimal set are a 2-d



−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

 

 

Before KKT−error reduction

(a) Input data set

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

 

 

After KKT−error reduction

(b) After KKT-error reduction

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

 

 

Pareto−set

A

B

(c) Pareto-optimal Set

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

0.000.150.300.44

0.70

0.96

0.00

0.33

0.67

1.00

f
1

f 2

 

 

Pareto front

A

B

(d) Pareto-optimal Front with parameter values

Figure 6.6: Results for two-variable `POL' problem
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(b) Variation of variables with parameter for B

Figure 6.7: Variation of variables with parameter for `POL' problem

hyposurface i.e. a surface. A three-objective, n-variable DTLZ1 problem is stated below.

Minimize f1(x) = 0.5x1x2 (1 + g(x3, . . . , xn)), (6.5)

Minimize f2(x) = 0.5x1 (1− x2) (1 + g(x3, . . . , xn)),

Minimize f3(x) = 0.5 (1− x1) (1 + g(x3, . . . , xn)),

Subject to 0 ≤ x ≤ 1,

Where g(x3, . . . , xn) = 100 (n− 2 +

n∑
i=3

(xi − 0.5)2 − cos(20π(xi − 0.5))).
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Figure 6.8: Results for 3-variable `DTLZ1' problem

The points in the Pareto-optimal set lie on a plane. Their mapping to the objective



space is also a plane. Figure 6.8 show the results for DTLZ1 problem. The average KKT-

error for the input points reduced from 2.67× 10−1 to 6.7× 10−4 after the error reduction

routine. Figure 6.8a shows the �tted surface in the variable space. Exact values of the

control points are shown in appendix A. Pareto-optimal set is a plane in the variable space

with variable x3 = 0.5 throughout the front. The �tted surface covers those Pareto regions

where no input data was found, thus points not found by MOOA can be found by using

the parametric equation of the surface. At the same time, there are parts of the modeled

surface which may not be necessarily Pareto-optimal. The mapping of Pareto-optimal set

in the decision space is shown in Figure 6.8b.

6.2.6 DTLZ2

Problem de�nition of an n-variable three-objective DTLZ2 problem is as follows:

Minimize f1(x) = (1 + g(x3, . . . , xn)cos(0.5πx1) cos(0.5πx2), (6.6)

Minimize f2(x) = (1 + g(x3, . . . , xn)cos(0.5πx1) sin(0.5πx2),

Minimize f3(x) = (1 + g(x3, . . . , xn)cos(0.5πx1),

Subject to 0 ≤ x ≤ 1,

Where g(x3, . . . , xn) =
n∑
i=3

(xi − 0.5)2,

(a) Pareto-optimal Set (b) Pareto-optimal Front

Figure 6.9: Results for 3-variable `DTLZ2' problem

Pareto-optimal set is a plane with x3 = 0.5 and Pareto-optimal front is part of a

sphere with f21 + f22 + f23 = 1. Results for the problem are shown in 6.9. KKT-error

reduction routine reduces the error from .0011 to 8×10−10. Figures 6.9a and 6.9b show the

Pareto-optimal set and Pareto-optimal front for the problem, respectively. Exact values of

control points can be found in appendix A.



6.2.7 DTLZ7

DTLZ7 has a disconnected set of Pareto-optimal front and Pareto-optimal set. There are

2M−1 disconnected Pareto regions in this problem. Problem de�nition for a three-objective,

n-variable DTLZ7 problem is stated below.

Minimize f1(x) = x1, (6.7)

Minimize f2(x) = x2,

Minimize f3(x) = (1 + g(x3, . . . , xn)h(f1, f2, g),

Subject to 0 ≤ x ≤ 1,

Where g(x3, . . . , xn) = 1 +
9

n−M + 1

n∑
i=3

xi,

h(f1, f2, g) = M −
M−1∑
i=1

(
fi

1 + g
(1 + sin(3π fi)).

(a) Pareto-optimal Set

(b) Pareto-optimal Front

Figure 6.10: Results for 3-variable `DTLZ7' problem

Figure 6.10 shows the results for a three-objective and three-variable DTLZ7 problem.

There are four disconnected Pareto regions here which have been identi�ed by the clustering



procedure. The average KKT-error for the input points reduced from 8.1× 10−3 to 1.7×
10−6 after the error reduction routine. The �tted Pareto-optimal set and the Pareto-

optimal front along with the input points are shown in Figures 6.10a and 6.10b, respectively.

It can be noticed that some of the points in the Pareto-optimal set don't lie exactly on

the front. Due to this the surface �tting is not exact and generated surface is not planar.

Exact values of control points are given in appendix A

6.2.8 OSY

OSY is a six variable problem. The Pareto-optimal front consists of �ve parts which are

continuously concatenated. However, in the variable space these �ve parts are discontinu-

ous. The problem is de�ned as following:

Minimize f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2],

(6.8)

Minimize f2(x) = x21 + x22 + x23 + x24 + x25 + x26,

Subject to C1(x) ≡ x1 + x2 − 2 ≥ 0,

C2(x) ≡ 6− x1 − x2 ≥ 0,

C3(x) ≡ 2− x2 + x1 ≥ 0,

C4(x) ≡ 2− x1 + 3x2 ≥ 0,

C5(x) ≡ 4− (x3 − 3)2 − x4 ≥ 0,

C6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0,

0 ≤ x1, x2, x6 ≤ 10,

1 ≤ x3, x5 ≤ 5,

0 ≤ x4 ≤ 6.

Figure 6.11a show the Pareto-optimal front for the OSY problem. `AB', `BC', `CD',

`DE' and `EF' show the �ve parts of the front. The data is divided into �ve parts by the

clustering procedure indicating that the Pareto-optimal set is discontinuous. For each of

the �ve parts, the B-spline curve �tting process gives several cubic splines joined with C2

continuity. Exact values of control points for each part are given in appendix A.

To show the variation of variables with parameter u, graphs between variable values

and parameter values are plotted for each of the 5 parts of the Pareto-optimal front. Figure

6.11 shows these plots. For AB, as we move from parameter value 0 to 1, x1, x2, x4, x5
and x6 remain constant at 5, 1, 0, 5 and 0, respectively. Only x3 changes along this part of

the Pareto-optimal front and its value rises from 1.41 to 5. For BC also, x1, x2, x4, x5 and

x6 remain constant at 5, 1, 0, 1 and 0, respectively. Here also, only x3 changes from 4.88

to 1.66. For CD, x3 and x5 are constant at variable value one while x4 and x6 take a value

of zero. The rise in value of x1 and x2 is linear. A closer inspection of the expressions of
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(b) Variation of variables with parameter for AB
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(c) Variation of variables with parameter for BC
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(d) Variation of variables with parameter for CD
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(e) Variation of variables with parameter for DE
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(f) Variation of variables with parameter for EF

Figure 6.11: Variation of six variables with parameter for `OSY' problem



x1(u) and x2(u) reveal that x2(u) = (x1(u) − 2)/3. Such an inspection was carried out

because the relationship was known to us from a previous study by Deb et al. [1]. For DE,

we notice that x1, x2, x4, x5 and x6 are constant at 0, 2, 0, 4 and 0 respectively. Value

of x3 varies between 1.63 and 3.69. For the part EF of the front, from parameter values

0 to nearly 0.1, properties of the variables are similar to those for DE. It seems that the

end of DE has been captured as EF. For the initial part of EF, x1 varies from 0 to 0.01,

x2 varies from 2 to 1.99,x3 varies from 1.24 to 1.14 and x4, x5 and x6 are constant at 0,1

and 0 respectively. For the rest of the part of EF, x1 rises with u, while x2 declines with

u. It appears that the plots of x1 and x2 are mirror image of each other about line x = 1.

This makes x2 = 2 − x1, which was also found by Deb in [1]. x3 is nearly constant and

x5 is constant at variable value of 1 while x4 and x6 have a constant value of 0.

We summarize the results in Table 6.1. These results are very close to those found by

Deb in [1]. We can infer some interesting properties of optimal points by this procedure

which can be useful to the decision maker. Some inferences are enumerated:

1. x4 = x6 = 0 along the front.

2. x5 is constant at 5 for part AB and at 1 for the rest of the front.

3. For AB, BC and DE the change in the objective function value is caused by the

change in the value of x3 alone.

4. x3 is non-decreasing throughout the Pareto-optimal front .

5. For part EF, x2 = 2− x1.

Front part x1 x2 x3 x4 x5 x6

AB 5 1 (1.41,. . .,5) 0 5 0

BC 5 1 (1.66,. . .,4.88) 0 1 0

CD (4.06, . . .,5) (0.69, . . .,1) 1 0 1 0

DE 0 2 (1.63,. . .,3.69) 0 1 0

EF(u∈ [0, .1]) (0,. . .,.01) (2.00,. . .,1.99) (1.24,. . .,1.14) 0 1 0

EF(u∈ (.1, 1]) (.01,. . .,.97) (1.99,. . .,1.03) (1.14,. . .,1) 0 1 0

Table 6.1: Relationships among variables inferred from the plots

6.3 Engineering Design problems

6.3.1 Two bar truss design problem

In a two bar truss design problem the goal is to minimize the volume of the structure

while allowing the structure to carry a minimum load without elastic failure. Figure 6.12



Figure 6.12: A two bar truss.

shows the diagram of a two bar truss. The stress in the two trusses, AC and BC, has to

be minimized. A load F = 105N acts at the junction C. The vertical distance between

B and C is variable y whereas the horizontal distance between the hinges is 5m. x1 and

x2 are the cross-sectional areas of AC and BC respectively and are measured in m2. The

yield stress (Sy) is 108 Pa. The three variable problem is de�ned as follows:

Minimize f1(x, y) = x1
√

16 + y2 + x2
√

(1 + y2), (6.9)

Minimize f2(x, y) = max(σAC , σBC),

Subject to max(σAC , σBC) ≤ 108,

1 ≤ y ≤ 3,

x ≥ 0,

where σAC =
F
√

16 + y2

5yx1
, σBC =

4F
√

16 + y2

5yx2
.

The objective f2 and the constraint on the maximum stress use a `max' function which

makes them non-di�erentiable. This prevents an e�ective local search and the data points

may not have a good structure to �t a curve through them. To bypass this problem,

an alternate formulation is considered. The constraint can be split into two di�erent

constraints, σAC ≤ 108 and σBC ≤ 108. These constraints demand that stress in both

the rods be less than the maximum permissible value of stress, which also implies that the

maximum of the stress in the two rods is less than the maximum limit, thus satisfying the

original constraint.

To circumvent the problem of non-di�erentiability of f2, an alternate smooth formula-

tion of local search procedure can be considered. The following optimization problem is



solved for local search starting from a reference point z returned by NSGA-II:

Minimize ε1 + ε2, (6.10)

Subject to w1(f1(x, y)− z1) ≤ ε1,

w2(ε2 − z2) ≤ ε1,

σAC ≤ ε2,

σBC ≤ ε2,

1 ≤ y ≤ 3,

x ≥ 0,

ε1 ≤ 0

(6.11)

This formulation helps us to remove the max function which caused the objective

function to be non-smooth. The di�erence between the results of the original formulation

for local search and the new formulation is shown in Figure 6.13. The original formulation

doesn't lead to any considerable correction in the data while the new formulation leads to

substantial reduction in the error.
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Figure 6.13: Error reduction results for two bar truss problem

In this problem, f1 lies in [0, 0.05] and f2 lies in [0, 108]. There is a vast di�erence in the

scales of both the objectives. Scaling in the variable space is also considerably di�erent.

This can cause problems in the the data �tting step. To circumvent this problem, the data

is normalized to the interval [0, 1]. The data is rescaled back to show the results. Figure

6.14 shows the results for the above problem. Input data set and the data set after error

correction are shown in Figure 6.14a. Figure 6.14b shows the Pareto-optimal set for this



problem. The mapped Pareto-optimal front is shown in Figure 6.14d. It is very close to

the non-dominated points shown in Figure 6.14c returned by the MOOA. Exact values of

control points can be found in A.
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Figure 6.14: Results for 3-variable `truss' problem

The variation of the variables with parameter values is shown in Figure 6.16. Notice

that after parameter value of around 0.89, there is a sudden change in the behavior of

all the variables. Moving from parameter value 0 to 0.89, it can be noticed that variable

y value does not change much, however the value of x1 and x2 rises steadily. It can be

noticed that variation of x1 and x2 with parameter u is linear and a relation between the

slopes of x1 and x2 can be found using the parametric equation of the curve. The value of

cross-sectional area of BC (x2) is always greater than cross-sectional area of AC (x1) for

all the optimal solutions. There is a little change in the value of x2 for parameter values
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Figure 6.15: Variation of 3 variables with parameter for `truss' problem

greater than 0.89, x2 reaches its maximum value of .01 and remains constant there. Thus,

for variable x2, the bound becomes active for u > 0.89. This may be the reason for sudden

change in the behavior of variables at u = 0.89. Variable value, x1 decreases slightly for

u > 0.89. However, a drastic change is seen for the variable y in the same range. This

means beyond the parameter value of 0.89, change in the optimal value of both functions

is mostly caused by change in the value of y.

For further analysis, variation of constraint g1 ≡ 108 − σAC and g2 ≡ 108 − σBC with

parameter u is studied. Figure 6.16 shows the variation of g1 and g2 with parameter u.

We observe that g2 and g1 have identical plots, implying that σAC = σBC throughout the

Pareto-optimal front.
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Figure 6.16: Variation of constraints g1 and g2 with parameter u for `truss' problem



Several interesting inferences which can be drawn from the plots are enumerated below.

These observations are similar to observations made by Deb et al. in [30] but here we �nd

them using a di�erent approach. The relationships that exist between the variables as

found by Deb et al. in [30] are y = 2 and x2 = 2x1.

1. x2 is greater than x1 throughout the Pareto-optimal front.

2. Relationship, x2 = 2x1, can be con�rmed from the parametric equation

3. Variable y, remains constant at y = 2 for parameter u < 0.89 and rises rapidly for

higher u values

4. After the parameter value of around 0.89, x2 reaches its upper bound and remains

constant there.

5. σAC = σBC throughout the front.

6. After the parameter value of around 0.89, the relative change in volume (f1) of the

structure is much larger than change in maximum stress (f2). Also, the relative

increase in y value is larger than decrease in x2 value. This implies that an increase

in y will cause much rapid rise in the optimal volume than the decrease it will cause

in the maximum stress. Thus, part of the Pareto-optimal front beyond u = 0.89,

may not be very useful to the decision maker.



6.3.2 Metal cutting problem

Metal cutting problem was introduced by Sardinas et al. in [88] and was discussed by Deb

et al. in [89]. The problem is to minimize the production time (Tp) and used tool life (ξ)

for a machining process. The variables are the cutting parameters: cutting speed (v), feed

(f) and depth of cut (a). The problem has three constraints apart from the lower and

upper bounds on all the variables. Bounds on the variable are supplied by the tool maker.

The cutting force (Fc) should be less than a threshold (Fcmax) depending on the strength

and stability of the machine and the tool. Maximum allowable cutting power (P ) should

be less than the machine motor power (PMOT ). Maximum surface roughness should be

less than a speci�ed maximum roughness (Rmax). The problem is de�ned as follows:

Minimize Tp(v, f, a), (6.12)

Minimize ξ(v, f, a),

Subject to g1(v, f, a) ≡ Fcmax − Fc(v, f, a) ≥ 0,

g2(v, f, a) ≡ η
PMOT

100
− P (v, f, a) ≥ 0,

g3(v, f, a) ≡ Rmax − R(v, f, a) ≥ 0,

vmin ≤ v ≤ vmax,

fmin ≤ f ≤ fmax,

amin ≤ a ≤ amax,

where Tp = τs +
V

M(v, f, a)
(1 +

τtc
T (v, f, a)

) + τo,

M(v, f, a) = 1000vfa,

T (v, f, a) = CT v
αfβaγ ,

ξ(v, f, a) =
100V

M(v, f, a)T (v, f, a)
,

Fc(v, f, a) = CF v
α′
fβ

′
aγ

′
,

P (v, f, a) =
vFc(v, f, a)

6× 104
,

R(v, f, a) =
125f2

re
.

Parameters τs, τtc, τo and V are the setup time, tool change time, idle tool time and

volume of the material removed, respectively. These are usually constant for a cutting

process. CF , α, β, γ, CF , α′, β′ and γ′ are experimentally calculated constants. T(v,f,a)

and M(v,f,a) are tool life and Material removal rate respectively and are functions of the

cutting parameters. η is the transmission e�ciency of the motor and re is the tool nose

radius. Values of constants for a machining of a steel bar on a CNC machine using a P20

carbide tool as described in [88] are given in Table 6.2. Further details on the problem can

be found in [88].



Parameter Value

τs .15min

τtc .20min

τo .05min

V 219,912m3

CT 5.48× 109

α -3.46

β -.696

γ -.460

CF 6.56× 103

α′ -.286

β′ .917

γ′ 1.10

amin, amax .6, 6mm

fmin, fmax .15, .55mm/rev

vmin, vmax 250, 400m/min

re .8mm

Fcmax 5000N

PMOT 10KW

η .75

Table 6.2: Parameters for metal cutting problem



Figure 6.17 shows the results for the above problem. Points returned by NSGA-II,

before and after error correction are shown in Figures 6.17a and 6.17b, respectively. NSGA-

II was run for 700 generations for a population size of 400. Not much di�erence between

the initial and the corrected data is observable from the �gures. However, an investigation

of the average KKT-error of the initial and corrected points reveals a reduction from the

initial value of 0.2629 to 0.0311, after the error reduction. As there is a large di�erence in

the range in which the variables lie, scaling of variables is done to achieve accurate results

for hyposurface �tting. Figure 6.17c shows the continuous Pareto-set as modeled by the

cubic B-splines. The results mapped to the objective space along with the parameter values

are shown in Figure 6.17d. Exact values of control points are given in appendix A. The

use of cubic B-spline enables accurate modeling of the linear as well as the non-linear part

of the Pareto-optimal set. The sharp junction between the linear and non-linear part of

the Pareto-optimal front is also captured by the B-spline.

The production time varies from 0.8545 min to 1.1258 min and used tool life varies from

2.1131 to 9.4883 along the Pareto-optimal front. From parameter value u=0 to u=0.6, the

production time (Tp) decreases from 1.1258 min to 0.9554 min. In the same interval, the

percentage used tool life (ξ) changes from 2.1131 to 2.5659. In this interval, the change in

production time with respect to the total change in production time along the front is large

compared to the same relative change for the used tool life. It implies that the solutions

in this interval may not be of much interest to the user. Figure 6.18a shows the variation

in the value of cutting speed (v) with parameter value. From parameter value u = 0 to

u = 0.6, v remains constant at its lower bound value of 250 m/min. In this interval, value

of f rises steadily to 0.55 mm/rev which is its upper bound. Value of a always decreases

along the front. In the range u=0 to u=0.6, f and a show an inverse relationship where

as from u=0.6 to u=1, v and a show an inverse relationship. Figure 6.18d shows the

variation of constraints g2 and g3 along with parameters. The constraint g1 is inactive

everywhere along the front. From �gure, it is observed that the roughness constraint (g3)

is also inactive everywhere along the front while the maximum cutting power constraint

(g2) is active along the whole front. The inferences drawn are summarized below:

1. From u = 0 to u = 0.6, v = 250 m/min

2. From u = 0 to u = 0.6, f and a are inversely related.

3. From u = 0.6 to u = 1, f = .55 mm/rev

4. From u = 0.6 to u = 1, v and a are inversely related.

5. a decreases from u=0 to u=1.

6. Constraint g2 is active everywhere along the front.
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Figure 6.17: Results for three-variable metal cutting problem
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Figure 6.18: Variation of 3 variables with parameter for metal cutting problem





Chapter 7

Conclusions and Future Scope

In this chapter, we discuss the conclusions and future scope of this work. Before going into

that we also look at some of the limitations of this algorithm.

7.1 Limitations of the algorithm

As a statistical model is used, it can not be said with certainty that all the points on the

modeled hyposurface are truly Pareto-optimal points. This is an inherent problem of any

data �tting procedure. Getting a continuous picture from a discrete image means making

some assumptions about the model. If the data is dense we will have more con�dence in

the modeled hyposurface as we do not expect sudden changes in the Pareto-optimal front.

However, with sparse data we can get an erroneous Pareto-optimal front even though the

least square distance error is su�ciently low. In our model, the clustering process ensures

that all the features of the input data are captured. The maximum distance between two

points to be considered a continuous entity is �xed. If the distance between two points

exceeds this distance, the points are considered to belong to two di�erent clusters and a

gap is thus detected.

For constrained optimization problems, the solutions may lie on the constraints bound-

ary. In such situation the points modeled by the hyposurface may be infeasible. Often

for such infeasible points, the function values may be slightly better than the true Pareto-

optimal points. Thus, constraints of any point generated using this model must be checked.

The process of joining hyposurfaces together is a complicated process because the pa-

rameterization at the joints needs to be continuous. For continuity of parameterization,

principal directions for all the patches need to be in synchronization. The complexity

of the problem increases as the dimension of the hyposurface increases. The procedure

presented here works for curves and surfaces, but a more e�cient strategy is required for

higher dimensional hyposurfaces.

The process of KKT-error reduction requires the objective functions to be di�erentiable

so that local search can be conducted. If the objective function is not smooth and there are

sudden kinks in the objective function or constraints then the process will have di�culties

in reducing error leading to a higher unacceptable �tting error.

For higher dimensional hyposurface the process of variation of variable and constraints

value along the front is di�cult to analyze by using graphical methods. There are numerous



directions in the parameter (u-w) space in which one can move. The graphical analysis is

possible if one knows, a priori, the direction along which the properties are to be analyzed,

otherwise it becomes a cumbersome task.

We consider problems where regularity conditions are met. So, for an M -objective

problem the algorithm assumes that the Pareto-optimal front and the Pareto-optimal set

are (M−1)-dimensional piecewise continuous entities. However, there is a class of problems

for which this may not be so and the Pareto-optimal set can be a higher or lower dimen-

sional manifold for a (M −1)-dimensional Pareto-optimal front. Several such problems are

considered by Zhou et al. in [86].

7.2 Conclusions

This thesis proposes an algorithm to model the Pareto-optimal set of a MOOP using

the data returned by a MOOA. A continuous picture is found from the discrete data set

returned by a MOOA. The algorithm takes advantage of the regularity and connectedness

property of the Pareto-optimal front to do modeling for certain class of problems. Cubic

B-spline basis functions are used for the process of data �tting. Results are shown for

some standard bi-objective test problems which show that the Pareto-front obtained by

the model is close to the actual Pareto-optimal front.

Such a procedure helps to obtain a continuous picture of the front which gives a sense

of completion in solving the optimization problem. Using the parametric hyposurface,

points not returned by the MOOA can be generated. As the �tting is done in the variable

space, one can easily generate points on the Pareto-optimal front at one's own discretion

and retrace back to the variable space using the parameter values. This can be helpful

in cases where variable values play an important role in decision making. In this paper

results for several standard bi-objective and tri-objective problems and two engineering

design problem were discussed. In future studies more engineering design problems can be

analyzed.

The major contribution of the thesis are:

• An error reduction method based on KKT-error reduction is implemented to improve

the results of a MOOA.

• A clustering procedure to �nd piecewise continuous Pareto-optimal set is imple-

mented.

• A tree based data �tting procedure using B-spline basis function is proposed and

implemented, to �nd the parameterization.

• No order in input data is assumed. Principal component analysis (PCA) is used to

�nd the order in the data.



• Several standard and real-life optimization problems are used to test the method.

• Innovative design principles are found and analyzed using the procedure.

7.3 Future Scope
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Figure 7.1: Hemisphere data and �tted surface

• In principle the algorithm can be extended to higher-objective problems as well. An

alternate formulation of B-spline basis functions will be required for higher dimen-

sions as the matrix notation is good up to two-dimensional manifolds only. A tensor

notation is required for higher-dimensional hyposurface. In higher-dimensions issues

with clustering and merging of clusters may turn up, which can be addressed in

future studies.

• The procedure of data �tting can also be used for designing MOOAs which use data

�tting as an intermediate step to �gure out relationships in non-dominated frontier

data and use that for faster convergence of the algorithm. Moreover problems with

complicated Pareto-optimal set can be tackled using such kind of integration.

• The procedure can be used as a stand-alone surface �tting algorithm. Initial results

in this direction are motivating. Figure 7.1 shows data points of a hemisphere �tted

using the algorithm presented here. Four B-spline patches are found and stitched

together. For complicated surface as that shown in Figure 7.21, the process gives

good surface patches, but joining them together with C2 continuity turns up to be a

cumbersome task. The example shown here has 20021 number of data points.

1Data points taken from http://research.microsoft.com/en-us/um/people/hoppe/proj/bspline/

http://research.microsoft.com/en-us/um/people/hoppe/proj/bspline/
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Appendix A

Control Points of Modeled Curves

and Surfaces for Test Problems

In this appendix control points and the equations of B-spline curve and surface that rep-

resent the Pareto-optimal set are given.

A.1 FON problem

For a three variable FON problem the Pareto-optimal set is modeled by 15 control points

shown below.

P =



−0.6727 −0.6727 −0.6727

−0.5773 −0.5773 −0.5773

−0.4819 −0.4819 −0.4819

−0.3865 −0.3865 −0.3865

−0.2911 −0.2911 −0.2911

−0.1957 −0.1957 −0.1957

−0.1003 −0.1003 −0.1003

−0.0049 −0.0049 −0.0049

0.0905 0.0905 0.0905

0.1859 0.1859 0.1859

0.2813 0.2813 0.2813

0.3767 0.3767 0.3767

0.4721 0.4721 0.4721

0.5675 0.5675 0.5675

0.6629 0.6629 0.6629



(A.1)

Equations of 12 segments,correct to three decimal places, that model the Pareto-optimal

set are shown in table A.1. As there are 12 segments parameter u ∈ [0, 12] with each

segment taking parameter values in gap of one.



Parameters x1 x2 x3

[0, 12] 0.095u-0.577 0.095u-0.577 0.095u-0.577

Table A.1: Parametric Equations for FON problem

Parameters x1 x2 x3

[0, 1] −0.010u3+0.023u2+0.126u+0.014 0 0

[1, 2] 0.003u3-0.014u2+0.164u+0.002 0 0

[2, 3] −0.001u3+0.009u2+0.118u+0.032 0 0

[3, 4] 0.001u3-0.007u2+0.165u-0.014 0 0

[4, 5] −0.001u3+0.008u2+0.104u+0.066 0 0

[5, 6] 0.001u3-0.013u2+0.212u-0.114 0 0

[6, 7] −0.002u3+0.046u2-0.141u+0.594 0 0

Table A.2: Parametric Equations for ZDT2 problem

A.2 ZDT2

For a three variable ZDT2 problem the Pareto-optimal set is modeled by 10 control points

shown correct upto four places of decimal below.

P =



−0.0967 −0.0000 0.0000

0.0063 0.0000 0.0000

0.1560 0.0000 0.0000

0.2939 −0.0000 0.0000

0.4362 0.0000 0.0000

0.5765 0.0000 0.0000

0.7185 0.0000 0.0000

0.8585 0.0000 0.0000

1.0013 0.0000 0.0000

1.1321 0.0000 −0.0000



(A.2)

Equations of seven segments,correct to three decimal places, that model the Pareto-optimal

set are shown in table A.2. As there are seven segments parameter u ∈ [0, 7] with each

segment taking parameter values in a range of one.



A.3 ZDT3

There are �ve clusters identi�ed in this problem and hence �ve di�erent B-splines. Each

part of the Pareto-optimal set is modeled by 6 control points. Moving left to right along

the Pareto-optimal front, the control points for the �ve clusters are represented by P1, P2,

P3, P4 and P5.

P1 =



−0.0159 0 −0.0000

−0.0029 0 0.0000

0.0289 0.0000 −0.0000

0.0528 0.0000 0.0000

0.0852 −0.0000 0.0000

0.0971 0 −0.0000


(A.3)

P2 =



0.1683 0.0000 −0.0000

0.1801 0.0000 0.0000

0.2091 −0.0000 0.0000

0.2315 0.0000 0.0000

0.2603 −0.0000 0.0000

0.2723 −0.0000 −0.0000


(A.4)

P3 =



0.4009 0.0000 0.0000

0.4079 0.0000 0.0000

0.4249 0.0000 0.0000

0.4380 0.0000 0.0000

0.4551 0.0000 0.0000

0.4624 −0.0000 −0.0000


(A.5)

P4 =



0.6125 0.0000 0.0000

0.6174 −0.0000 0.0000

0.6305 0.0000 0.0000

0.6403 0.0000 0.0000

0.6533 −0.0000 0.0000

0.6587 0.0000 0.0000


(A.6)

P5 =



0.8178 0.0000 0.0000

0.8224 0.0000 −0.0000

0.8334 −0.0000 0.0000

0.8418 0.0000 −0.0000

0.8528 0.0000 0.0000

0.8575 −0.0000 0.0000


(A.7)



Front part Parameters x1 x2 x3

1

[0, 1] −0.0045u3 + 0.0095u2 + 0.0224u+ 0.0002 0 0

[1, 2] 0.0028u3 − 0.0123u2 + 0.0442u− 0.0070 0 0

[2, 3] −0.0048u3 + 0.0334u2 − 0.0473u+ 0.0540 0 0

2

[0, 1] −0.0039u3 + 0.0085u2 + 0.0204u+ 0.1830 0 0

[1, 2] 0.0022u3 − 0.0097u2 + 0.0386u+ 0.1769 0 0

[2, 3] −0.0039u3 + 0.0264u2 − 0.0337u+ 0.2251 0 0

3

[0, 1] −0.0023u3 + 0.0050u2 + 0.0120u+ 0.4095 0 0

[1, 2] 0.0013u3 − 0.0058u2 + 0.0228u+ 0.4059 0 0

[2, 3] −0.0023u3 + 0.0158u2 − 0.0203u+ 0.4347 0 0

4

[0, 1] −0.0019u3 + 0.0040u2 + 0.0090u+ 0.6187 0 0

[1, 2] 0.0011u3 − 0.0048u2 + 0.0178u+ 0.6158 0 0

[2, 3] −0.0018u3 + 0.0123u2 − 0.0164u+ 0.6386 0 0

5

[0, 1] −0.0015u3 + 0.0032u2 + 0.0078u+ 0.8234 0 0

[1, 2] 0.0008u3 − 0.0038u2 + 0.0148u+ 0.8211 0 0

[2, 3] −0.0015u3 + 0.0102u2 − 0.0133u+ 0.8398 0 0

Table A.3: Parametric equation for ZDT3 problem

The parametric equation for each cluster is shown in Table A.3



A.4 POL

POL problem has two clusters. Cluster A is modeled by 12 control points where as cluster

B is modeled by 24 control points. Control points of both clusters are given below.

PA =



0.7341 1.5557

0.7769 1.5710

0.8368 1.5838

0.8959 1.6110

0.9335 1.6350

0.9841 1.6997

1.0072 1.7624

0.9892 1.8213

1.0023 1.8764

0.9951 1.9331

1.0037 1.9943

0.9876 2.0329



PB =



−2.9781 −1.0153

−2.9993 −0.9985

−3.0873 −0.9713

−3.1551 −0.9330

−3.1367 −0.8099

−3.1442 −0.7018

−3.1401 −0.6310

−3.1423 −0.5346

−3.1412 −0.4412

−3.1418 −0.3525

−3.1415 −0.2618

−3.1416 −0.1678

−3.1416 −0.0756

−3.1416 0.0049

−3.1416 0.0876

−3.1416 0.1687

−3.1416 0.2471

−3.1416 0.3464

−3.1416 0.4306

−3.1416 0.5176

−3.1416 0.5947

−3.1416 0.6859

−3.1416 0.7657

−3.1416 0.8442



(A.8)



A.5 DTLZ1

DTLZ1 is modeled by 30 control points. Control points are given below.

P =



1.1171 1.1307 0.5000

1.0253 1.1070 0.5000

0.4879 1.0951 0.5000

0.2846 1.1009 0.5000

−0.1875 1.1990 0.5000

1.0922 0.8316 0.5000

0.9413 0.8794 0.5000

0.5484 0.9346 0.5000

0.1715 0.9617 0.5000

−0.1722 1.0437 0.5000

1.0943 0.5366 0.5000

0.9200 0.5867 0.5000

0.4907 0.6222 0.5000

0.1388 0.6789 0.5000

−0.1134 0.6958 0.5000

1.1181 0.2977 0.5000

0.8678 0.3229 0.5000

0.4725 0.3740 0.5000

0.1146 0.4080 0.5000

−0.1026 0.4818 0.5000

1.1416 −0.0282 0.5000

0.8522 0.0200 0.5000

0.4444 0.0653 0.5000

0.0522 0.1221 0.5000

−0.0766 0.1532 0.5000

1.0934 −0.1101 0.5000

0.6903 −0.1021 0.5000

0.4547 −0.1005 0.5000

0.0044 −0.0940 0.5000

−0.1265 −0.1996 0.5000



(A.9)



A.6 DTLZ2

DTLZ2 is modeled by 30 control points. Control points are given below.

P =



1.0621 1.1065 0.5000

0.9547 1.1149 0.5000

0.5077 1.0953 0.5000

0.2255 1.1042 0.5000

−0.1989 1.0978 0.5000

1.1092 0.9052 0.5000

0.8638 0.8810 0.5000

0.5264 0.9132 0.5000

0.1610 0.9390 0.5000

−0.1332 0.9559 0.5000

1.0578 0.5629 0.5000

0.8567 0.6102 0.5000

0.5065 0.6293 0.5000

0.1404 0.6539 0.5000

−0.1333 0.6808 0.5000

1.1336 0.3420 0.5000

0.8274 0.3560 0.5000

0.4937 0.3809 0.5000

0.1160 0.4016 0.5000

−0.1013 0.4241 0.5000

1.1783 0.0386 0.5000

0.8089 0.0741 0.5000

0.4737 0.0985 0.5000

0.0974 0.1293 0.5000

−0.0936 0.1523 0.5000

0.9292 −0.0949 0.5000

0.7858 −0.1066 0.5000

0.4730 −0.0936 0.5000

0.0647 −0.1208 0.5000

−0.1088 −0.0710 0.5000



(A.10)

A.7 DTLZ7

DTLZ7 has four clusters. Each cluster is modeled by di�erent number of control points.

Cluster 1 is modeled by 12, cluster 2 is modeled by 20 and cluster 3 and 4 are modeled by

15 number of control points each. Control points for each cluster are shown below.



P1 =



0.7232 0.9117 −0.0000

0.5878 0.9117 −0.0000

0.5878 0.6765 0.0001

0.9096 0.9117 −0.0000

0.6807 0.8600 0.0000

0.5878 0.5760 −0.0000

0.9096 0.9117 −0.0000

0.8506 0.6605 0.0000

0.5878 0.5760 −0.0000

0.9027 0.6970 −0.0001

0.9096 0.5760 −0.0000

0.6561 0.5760 0.0001



P2 =



0.0180 −0.0505 −0.0000

0.0067 0.0441 −0.0000

−0.0519 −0.0511 −0.0000

0.0052 −0.0102 0.0000

−0.0047 0.0537 0.0003

−0.0168 0.2919 −0.0001

−0.0332 0.1339 0.0000

0.0489 0.0554 0.0000

0.1387 −0.0301 0.0000

0.2432 −0.0253 0.0000

−0.0280 0.2746 0.0002

0.1152 0.2906 −0.0000

0.1937 0.1971 0.0000

0.2833 0.1115 −0.0000

0.2989 −0.0126 0.0000

0.3115 0.2609 −0.0000

0.2166 0.2540 0.0000

0.3114 0.3123 −0.0001

0.2789 0.2276 0.0001

0.0958 0.3132 0.0004



(A.11)

P3 =



0.6091 0.3153 −0.0000

0.8516 0.3153 0.0001

0.5818 0.3153 −0.0000

0.5818 0.3153 −0.0000

0.5818 0.3153 0.0000

0.9057 0.3153 0.0000

0.8881 0.0582 −0.0000

0.7265 0.2849 0.0000

0.6247 −0.0298 0.0000

0.5818 0.0598 0.0003

0.9057 −0.0526 −0.0000

0.7994 −0.0526 0.0001

0.9057 −0.0526 −0.0000

0.9057 −0.0526 0.0000

0.5818 −0.0526 0.0004



P4 =



−0.0513 0.9090 0.0002

−0.0513 0.8185 −0.0000

−0.0513 0.9095 −0.0000

−0.0513 0.9095 −0.0000

−0.0513 0.5829 0.0001

0.3138 0.9095 −0.0000

0.1394 0.9003 −0.0000

0.2380 0.7333 0.0000

−0.0125 0.6653 −0.0000

0.0018 0.5829 −0.0000

0.3138 0.9095 −0.0000

0.3138 0.5829 0.0000

0.3138 0.5829 −0.0000

0.3138 0.5829 0.0001

0.3137 0.5829 −0.0000



(A.12)



A.8 OSY

OSY has 5 di�erent clusters identi�ed as AB, BC, CD, DE and EF. Cluster AB is modeled

by 7 control points, BC by 5 control points, CD by 4 control points, DE and EF by 6

control points each. The control points for each of these 5 parts of the Pareto-optimal set

are shown below.

PAB =



3.9165 0.6388 1.0006 0.0000 1.0000 −0.0000

4.0467 0.6822 0.9998 0.0000 1.0000 −0.0000

4.2990 0.7663 1.0002 0.0000 1.0000 0.0000

4.5312 0.8437 0.9997 −0.0000 1.0000 0.0000

4.7603 0.9201 1.0008 0.0000 1.0000 0.0000

5.0156 1.0052 0.9961 0.0000 1.0000 0.0000

5.1470 1.0490 1.0565 0.0000 1.0000 0.0000


(A.13)

PBC =


5.0000 1.0000 0.5947 0 5.0000 0.0000

5.0000 1.0000 1.1839 0 5.0000 0.0000

5.0000 1.0000 3.1459 0 5.0000 0.0000

5.0000 1.0000 5.1633 0 5.0000 0.0000

5.0000 1.0000 5.7323 0 5.0000 0.0000



PCD =


5.0000 1.0000 5.6903 0 1.0475 0.1934

5.0000 1.0000 5.6903 0 0.9924 −0.0316

5.0000 1.0000 0.8582 0 1.0048 0.0198

5.0000 1.0000 0.8582 0 0.9919 −0.0322



PDE =



0.4877 1.5165 1.5989 0.0000 1.0000 −0.0000

−0.1975 2.1963 1.2288 0.0000 1.0000 0.0000

0.2622 1.7385 0.9002 −0.0000 1.0000 0.0000

0.6616 1.3376 1.0747 0.0000 1.0000 −0.0000

0.9934 1.0080 0.9002 −0.0000 1.0000 0.0000

1.1851 0.8219 1.3931 −0.0000 1.0000 0.0001



PEF =



0.0000 2.0000 4.1123 0.0000 1.0000 −0.0014

0.0000 2.0000 3.7614 0.0000 1.0000 0.0005

−0.0000 2.0000 2.9727 −0.0000 1.0000 −0.0005

−0.0000 2.0000 2.3564 −0.0000 1.0000 0.0007

0.0000 2.0000 1.5512 0.0000 1.0000 0.0015

0.0001 2.0000 1.2481 0.0000 1.0000 −0.0016





A.9 Two Bar Truss Problem

In this problem Pareto-optimal set is modeled by 20 control points. The control points are

given below.

P =



0.0002 0.0003 1.9987

0.0004 0.0009 2.0003

0.0007 0.0015 2.0001

0.0010 0.0021 2.0001

0.0013 0.0026 2.0000

0.0016 0.0032 2.0002

0.0019 0.0038 2.0000

0.0022 0.0044 2.0001

0.0025 0.0050 1.9998

0.0028 0.0056 2.0004

0.0031 0.0061 1.9991

0.0034 0.0067 2.0016

0.0037 0.0073 1.9969

0.0039 0.0079 2.0053

0.0043 0.0085 1.9899

0.0045 0.0091 2.0210

0.0051 0.0100 1.9542

0.0048 0.0100 2.1470

0.0036 0.0100 3.1787

0.0046 0.0102 3.0752



(A.14)



A.10 Metal Cutting problem

Pareto-optimal set in this problem is modeled by 20 control points. These control points

are given below.

P =



250.0537 0.1395 6.6309

249.9867 0.1587 5.9960

250.0098 0.1802 5.3867

249.9870 0.2053 4.8333

250.0223 0.2342 4.3298

249.9615 0.2668 3.8864

250.0701 0.3029 3.4931

249.8747 0.3437 3.1511

250.2373 0.3841 2.8639

249.5173 0.4366 2.5883

251.0063 0.4693 2.4170

247.6387 0.5570 2.1182

259.0589 0.5482 2.0905

287.9872 0.5506 1.9405

306.7920 0.5496 1.8696

331.3558 0.5501 1.7748

353.2345 0.5498 1.7053

376.9374 0.5501 1.6329

399.6038 0.5499 1.5747

424.5796 0.5497 1.5079



(A.15)
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