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1 Stochastic Process

We start by thinking about stock price as a random and time dependent quan-
tity. We model such evolving random phenomena by thinking of them as
stochastic (or random) processes. To be able to study them, we first need
to define a stochastic process. Without going into too much technicalities, we
can start simply with random variables. A random variable (RV) takes value
from a set of outcomes (sample space) as a result of some random event, for in-
stance roll of a dice or toss of a coin (in case of stock prices this random event is
multiple participants quoting and trading in the market). A stochastic process
can be thought of as a sequence of random variables indexed by numbers from
an index set. The index set can be discrete or continuous. For modelling stock
price S(t) index set is continuous time t.

Once we have decided to model price as stochastic process, next question
is what kind of distribution does each RV in this sequence follow. For this, we
take reliance on our intuition and some simplification. We note that change
in stock price in a given interval can be assumed to be normally distributed
with mean 0 and variance∆t. Also, we may assume that price change in two
non-overlapping intervals is independent of each other. One may think that
this is not necessarily true, prices may exhibit momentum and the mean = 0
assumption is also not true as prices show drift. However, these are simplifying
assumptions to build a framework to quantitatively study stock prices. As we
build the theory, we will study in later notes some stochastic processes that can
take care of these assumptions.

1.1 Brownian Motion

Given the setup above, we now describe a simple stochastic process for modelling
stock prices. We assume that the process starts at 0, and at each moment the
change in its value is normally distributed and independent of previous changes.
This indeed is a known and well studied random process called Brownian motion.
We can define it as:

1. B(0) = 0

2. B(t)−B(s) ∼ N(0, t− s)

3. B(ti)−B(si) are independent over non overlapping intervals
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1.2 Properties of Browning motion

1.2.1 Non-differentiable

Next we want to model change in B(t) in a small duration ∆t. First we state

that B(t) is not differentiable i.e. limh−>0
B(t+h)−B(t)

h doesn’t exist. This is
not intuitive, one would suppose the niceties of the normal distribution to play
out and not let the B jump around too much in small duration ∆t. Also, when
we visualize stock prices they do feel smooth to the naked eyes. However it’s
indeed true, as ∆t → 0, change in B could be arbitrarily large and that means
we can’t draw a line along B(t) and define a slope. The intuitive reason is
that the change in function B(t) in a given interval of time, howsoever small, is
stochastic and thus can take any arbitrary value. Hence, we really can’t think
of B(t) as a smooth function.

1.2.2 Quadratic Variation

Consider function f(x) = x and interval t = 0 to t = T . We split this in tiny
N intervals where each interval is of length T

N , we then compute this function’s
quadratic variation as:

QV =
∑

{f(ti+1)− f(ti)}2 =
∑

(T/N)2 = T 2/N (1)

As N → ∞, QV → 0. This is understandable, as we refine our interval the
quadratic terms will be too small and thus the sum is 0. You may also think
that for each small interval we can approximate function by its slope and ignore
the higher order terms. This holds true for all well behaved functions that we
generally encounter. However, this can’t be said for B(t). We have seen that
B is not differentiable thus the slope is not defined, the quadratic changes at
every small interval accumulate. Indeed,∑

(B(ti+1)−B(ti))
2 = T (2)

To see this, B(ti+1)−B(ti) ∼ N(0, T
N ) . QV is the sum of square of iid normal

RV. Each has mean T
N , thus the sum is T in expectation. It can be shown to

hold with probability 1 as well using law of large numbers. So, we see quadratic
variation property is

∑
(B(ti+1)−B(ti))

2 =
∑

∆B2 = T and we can also write
∆B2 = ∆t. I think we can show the last result to be true with probability 1,
but I am not sure.

1.3 Ito’s Calculus

Classical calculus tools are not available for stochastic process B as the differ-
ential operator can’t be defined in the classical sense. However, often we want
to study small change in a smooth function of a stochastic process f(Bt). In
order to understand how we can compute this ∆f(Bt), we first try to compute
this for a regular function f(x) using Taylor’s expansion at x:

∆f(x) = f(x+∆x)− f(x) (3)

= f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2 − f(x) (4)
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Ignoring quadratic and above terms for small ∆x, we get:

∆f(x) = f ′(x)∆x (5)

We can use the similar approach to compute ∆f(Bt):

∆f(Bt) = f(Bt +∆Bt)− f(Bt) (6)

= f(Bt) + f ′(Bt)∆Bt +
1

2
f ′′(Bt)∆Bt

2 − f(Bt) (7)

= f ′(Bt)∆Bt +
1

2
f ′′(Bt)∆t (8)

We can now define ∆Bt = dB for small dt and drop the t notation, this leads
us to one of our main result (ito1):

df = f ′(B)dB +
1

2
f ′′(B)dt (9)

1.3.1 Ito’s Lemma: Extension to f(t,X)

For a more generalized two variable function of non-stochastic t and a stochastic
process X

df(t,X) =
∂f

∂t
dt+

∂f

∂X
dX +

1

2

∂2f

∂X2
dX2 (10)

For a process defined simply as X = Bt or dX = dB we can replace dX2 = dt

df(t,X) =

(
∂f

∂t
+

1

2

∂2f

∂X2

)
dt+

∂f

∂X
dB (11)

For another slightly involved stochastic process defined as dXt = µtdt + σtdB
we can substitute in equation 10 to get:

df(t,X) =
∂f

∂t
dt+

∂f

∂X
(µtdt+ σtdB) +

1

2

∂2f

∂X2
(µtdt+ σtdB)

2
(12)

=

(
∂f

∂t
+ µt

∂f

∂X
+

1

2
σ2
t

∂2f

∂X2

)
dt+ σt

∂f

∂X
dB (13)

Here we have ignored higher order dt2 and dBdt terms.

1.3.2 Extension to Geometric Brownian Motion (GBM)

Further, we extend application of Ito’s calculus to GBM which is often used to
model stock prices. Under GBM, instantaneous stock returns are modeled with
a deterministic drift component µ and a stochastic Brownian component with
variance σ2 :

dX

X
= µdt+ σdB

Using 10 we note:

df(t,X) =
∂f

∂t
dt+

∂f

∂X
(µXdt+ σXdB) +

1

2

∂2f

∂X2
(µXdt+ σXdB)

2
(14)

=

(
∂f

∂t
+ µX

∂f

∂X
+

1

2
σ2X2 ∂2f

∂X2

)
dt+ σX

∂f

∂X
dB (15)
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1.4 Conclusion

That’s it! These are the main results to know in stochastic calculus to be able to
understand some of the derivatives pricing equations like BSM. There is endless
more maths involved but I think understanding the above should be enough to
compute on our own some of the arithmetic. For instance, the classical calculus
result of product rule and quotient rule can be extended to ito’s calculus as well.

• Classical: d(XY ) = XdY + Y dX

• Ito’s: d(XY ) = XdY + Y dX + dXdY

This result can be obtained by writing higher order terms in classical calculus
formula of differential of two variable function f(X,Y ).

df(X,Y ) =
∂f

∂Y
dY +

∂f

∂X
dX +

1

2

∂2f

∂X2
dX2 +

1

2

∂2f

∂Y 2
dY 2 +

∂2f

∂X∂Y
dXdY (16)

For f(X,Y ) = XY we can get the above result. Similarly, lets try for f(X,Y ) =
X
Y

df(X,Y ) = − X

Y 2
dY +

1

Y
dX +

X

Y 3
dY 2 − 1

Y 2
dXdY (17)
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