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Abstract

Kernel methods have demonstrated huge success in modelling non- linearities in real world
data. A major challenge in using these methods for large scale data is the high cost
involved in computation and storage of the kernel matrix. Kernel approximation is an
effective way of dealing with these issues and scaling up kernel machines. Although a long
track of work has been done in finding a low rank approximation of the kernel matrix,
little effort has been made in leveraging algorithms designed for approximation of general
matrices. A major obstacle in extending general matrix approximation schemes to the
kernel matrix is their inability to respect the symmetry and the positive semi-definite na-
ture of the kernel matrix. In this work, we take inspiration from the Leverage Element
Low rank Approximation (LELA) algorithm, a recent development in general matrix ap-
proximation and propose an O(nr3 log n) time algorithm for rank r approximation of the
kernel matrix. The proposed algorithm is based on random sampling of the entries of the
kernel matrix followed by a matrix completion step using alternating least squares (ALS).
Empirically, our method shows better performance than the state-of-the-art kernel approx-
imation methods on several standard real life datasets. Theoretically, we show that under
certain assumptions on the nature of the kernel matrix, previous results in low rank matrix
completion literature can be extended to our proposed scheme, thus, showing convergence
to the optimal solution.
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Chapter 1

Introduction

In the last two decades, kernel methods have garnered a lot of attention in the machine
learning community. One of the main reasons for the popularity of these methods is their
ability to give good performance on machine learning tasks while providing a firm the-
oretical understanding. The famous “kernel trick” is a slick and easy way to introduce
non-linearity in linear algorithms. It is no wonder that kernelized versions of several classi-
cal algorithms have become popular in the last two decades. These include Support Vector
Machine (SVM) [1, 2], Kernel Ridge Regression (KRR) [3], Kernel Principal Component
analysis (KPCA) [4] and Kernel Canonical Correlation Analysis (KCCA) [5, 6], among
others. In this chapter we will introduce the kernel function and highlight the advantages
they provide in machine learning tasks. Further, we discuss the challenges associated with
kernel learning and use this to motivate the need for a low rank approximation of kernel
matrix as a solution to scaling kernel machines. The problem of finding a low rank approx-
imation of a symmetric positive semi-definite (SPSD) kernel matrix is the subject matter
of this thesis.

1.1 Kernels

In mathematics and statistics, the word “kernel” can take several different meanings. In
machine learning, kernel function (K) can be, crudely, understood as a similarity measure
between the members of a set. A kernel function can simply be defined as a real valued
bivariate function, K : X ×X → R, where X is some set. For example, inverse of distance
between points x, y in euclidean space (K(x, y) = −||x − y||2) is a natural similarity
measure.

Though, kernel functions can be seen as a similarity measure, a more interesting class
of kernel functions is the class of functions which represent inner product in some Hilbert
space. This class of kernels is known by different terms in the machine learning literature
including Mercer kernel, support vector kernel, admissible kernel, non-negative definite
kernel, positive definite kernel, symmetric positive semi-definite kernel (SPSD) etc. This
class has several properties which make them very interesting for theoretical analysis. In
this work we will restrict ourselves to this class of kernels.

In a machine learning setting, the learning algorithm is often provided with some input



data from some set X . Let D = {x1, . . . , xn} be the input data where xi ∈ X , ∀i ∈ [n] are
the individual observations belonging to the set X . Let K : X ×X → R be a SPSD kernel.
As SPSD kernels define an inner-product in some Hilbert space H,

K(x, y) = 〈φ(x), φ(y)〉H

where φ (.) defines a mapping from input set X to feature space H,

φ : X → H

Though, the definition requires no restriction on the set X , we will see that all the datasets
that we consider in our experiments have X ⊆ Rd.

Given n input points in X and a kernel function K, we can define the corresponding
kernel matrix as n × n matrix of pairwise inner-products in H i.e. Kij = K(xi, xj) =

〈φ(xi), φ(xj)〉. This matrix is of much practical importance in kernel based learning al-
gorithms. Therefore, it is important to understand some of the properties of this matrix.
Observe that, K is a symmetric and positive semi-definite matrix. Symmetry of matrix K
follows from the commutative nature of the inner-product, while positive semi-definiteness
of K follows from:

K = [φ(x1) . . . φ(xn)]T [φ(x1) . . . φ(xn)]

and for any y ∈ Rn,

yTKy = ([φ(x1) . . . φ(xn)] y)T ([φ(x1) . . . φ(xn)] y) (1.1)

= || ([φ(x1) . . . φ(xn)]y)T ||2 ≥ 0

Note that the above property holds irrespective of the value of n i.e. given any n points
from the input set, the corresponding kernel matrix K turns out to be SPSD. Therefore,
any principal sub-matrix (defined by removing some rows and corresponding columns) of
a kernel matrix is also SPSD. In fact, this result holds for any general SPSD matrix. As a
result, the diagonal elements Kii ≥ 0, ∀i.

1.1.1 Kernel trick

The popularity of kernel methods can be attributed to a simple trick which provides an
easy way to introduce non-linearity in linear algorithms. Kernel functions represent an
inner product in feature space, H, whose dimensions depend upon the kernel function
itself. Usually, H is a high dimensional space. For example, the dimensionality of H
for the commonly used Gaussian kernel is infinite. Explicitly working in such a high
dimensional space is computationally infeasible. However, kernels provide an inexpensive
way to compute the inner product in this space. For input data points in Rd, most of
the kernel functions can be computed in O(d) time. The kernel trick exploits this fact by
substituting the inner product with the kernel function in the formulation of the learning



algorithm. If in an machine learning algorithm, input data interacts solely based on inner
products, kernels provide an inexpensive bridge to a high dimensional space.

Several algorithms in machine learning are classically known to learn linear functions.
Kernelized versions of these algorithms are linear in the mapped feature space but in the
original input space the learnt function is non-linear. As an example, SVM without kernels
learns a linear separator in the input space, given by

h(x) =
n∑
i=1

αix
T
i x (1.2)

for x1, . . . , xn, x ∈ X ⊆ Rd. Using the kernel trick, SVM can inexpensively create a linear
separator in the mapped feature space, H.

h(x) =
n∑
i=1

αiφ(xi)
Tφ(x) (1.3)

=
n∑
i=1

αiK(xi, x) (1.4)

As the feature map associated with the kernel can be non-linear, linear classifiers in
feature space corresponds to a non-linear classifier in the input space H.

1.2 Challenges in Kernel Learning

Most of the kernel based learning algorithms require the computation of the entire ker-
nel matrix corresponding to the training data set. For training set of size n belonging to
Rd, this will typically take O(n2d) time. In today’s world of ubiquitous data, anything
quadratic in n is prohibitive for large scale learning. Additionally, storing the kernel ma-
trix requires O(n2) space, which hinders scalability as well. To get a sense of the issue
at hand, note that Tyree et al.[7] report training time of over 12 days on the MNIST8M
dataset using a kernelized SVM. This is a little disappointing given the appealing theo-
retical understanding of these methods when compared to deep neural networks. Training
and testing time notwithstanding, the performance of kernel methods have been reported
to match those of deep neural networks on some specific problems [8, 9].

1.2.1 Overcoming scalability issues

A common way of tackling the problem of scalability is to use an approximate sketch of
the kernel matrix. Generally, these sketches are obtained as low rank approximations of
the kernel matrix. William and Seeger [10] have shown the low rank nature of the kernel
matrix for several artificial and real life datasets. This motivates the construction of low
rank approximations for the kernel matrix without compromising much on the performance.
Once a low rank approximation of the form K ≈ UUT is obtained, it can be utilized by



learning algorithms for speed ups. In terms of space complexity, low rank sketches can be
stored effciently. Storing a rank r approximation requires storing the n× r size matrix U ,
thus reducing the space complexity to linear in n. A major challenge is to efficiently come
up with good approximations for the kernel matrix within time and space constraints.

1.3 Objective and Scope

In this work we propose an approach to construct a low rank approximation of the kernel
matrix efficiently. Given n input points x1, . . . , xn in input space X ⊆ Rd and a SPSD
kernel function K : X ×X → R the kernel matrix is a n×n matrix with Kij = K(xi, xj).
The problem of a rank r approximation for K can be stated as finding Un×r such that

min
U∈Rn×r

∑
i,j

(
Kij − eTi UUT ej

)2 (1.5)

where ei is the n× 1 column vector with 1 at ith coordinate and 0 at other coordinates.
Note that the factorization of the sketch as UUT ensures that the sketch has rank

less than or eual to r. The challenge is to find U efficiently without looking at all the n2

entries of the kernel matrix. This is interesting because every entry of K contributes to
the objective function in 1.5. The major contributions of this work are summarized below:

• We provide an O(n log nr3) time algorithm to compute a rank r approximation to
K.

• We theoretically show the convergence of a simplified version of our algorithm.

• We empirically show the improvement in approximation error when compared to the
state-of-the-art methods to solve this problem.

• We show a comparison of different low rank approximation schemes on kernel ridge
regression problem

1.4 Structure of the thesis

The thesis is structured in the following manner:
Chapter 2 presents a literature review of methods that try to approximate the kernel

matrix. We also look at some algorithms for low rank approximation of a general matrix.

Chapter 3 covers the details of our algorithm. Here, we introduce several sampling
schemes and initialization strategies to solve the optimization problem. Finally, we elabo-
rate the details of our algorithm.



Chapter 4 presents the theoretical analysis of our algorithm. We show that if enough
number of entries are sampled, convergence to the true optimum will occur with high prob-
ability.

Chapter 5 gives empirical evidence for the performance of our algorithm as compared
to other kernel approximation algorithms. We also show an application of kernel approxi-
mation to the kernel ridge regression problem.

In Chapter 6 limitations of the algorithm are presented and the scope for future work
is discussed.





Chapter 2

Literature Review

In this chapter a brief overview of the past research relevant to the thesis is provided.
Existing algorithms that try to provide a low rank approximation of the kernel matrix
are discussed and their difference from the algorithm proposed in this thesis is pointed
out. Research in the field of low rank approximation of general matrices is vast and only
relevant algorithms are presented in this chapter.

2.1 Singular Value Decomposition (SVD)

For any general matrix M ∈ Rn×m, the problem of finding the best rank r can be posed
as:

min
rank(M̂)≤r

||M − M̂ || (2.1)

where ||.|| is the spectral norm. It can be shown that the top r singular vectors can be
used to construct the optimal rank r approximation, Mr [11]. If the complete SVD of M
is given by,

M = Un×mΣm×mV
T
m×m (2.2)

then by choosing the top-r left and right singular vectors, an approximation can be con-
structed as

Mr = Un×rΣr×rV
T
r×m (2.3)

It can also be shown that the optimal spectral and Frobenius error is given by:

||M −Mr||2 = σr+1 (2.4)

||M −Mr||F =

(
m∑

i=r+1

σ2
i

) 1
2

Computing the top-r singular vectors requires computation of partial SVD which takes
O(nmr) time and O(nm) space. For large datasets this is prohibitive in both space and
time, specially due to the requirement of computing the entire kernel matrix. The aim of
any low rank approximation algorithm is to get errors as close to the optimal SVD errors
as possible while doing better than SVD in both space and time complexity. In chapter 3,
we compare the error of our proposed algorithm with the optimal SVD error.



2.2 Nystrom Approximations

The first attempt to approximate the kernel matrix were made by Williams and Seeger in
their seminal work [10]. They introduce a kernel approximation algorithm based on the
theory of linear integral operator defined using kernels.

2.2.1 Integral operators based on kernel function

From our discussion in chapter 1, we know that the kernel matrix defined by a symmetric
positive semi-definite (SPSD) kernel function is SPSD. As the entries of this matrix de-
fine an inner-product in H, there must be some restriction on the kernel function which
generated these entries. Obviously, not all functions can satisfy K(x, y) = φ(x)Tφ(y).
What kinds of restrictions does such a condition put upon the function K? The question
was answered long back in 1909 by Mercer [12] while discussing some theories of integral
equations. The result is known as the well known Mercer’s theorem in machine learning.

Mercer’s theorem takes us to a more general understanding of kernels where they are
associated with linear transforms. By associating integration with a kernel function a linear
transformation can be defined. Integral transformation Tk of function f : X → R is defined
as

(Tkf)(x) =

∫
X
K(x, y)f(y)dy

This is a linear transformation as

(Tf1 + f2)(x) =

∫
X
K(x, y)(f1(y) + f2(y))dy

=

∫
X
K(x, y)f1(y)dy +

∫
X
K(x, y)f2(y)dy

= Tf1(x) + Tf2(x)

where f1 and f2 have the same domain. Like matrices, integral operators also have eigen-
values and eigenfunctions. Functions in L2 which satisfy

(Tkψ)(x) =

∫
X
K(x, y)ψ(y)dy = λψ(x) (2.5)

are eigenfunctions with λ as eigenvalue. Positive semi-definiteness of Tk implies the fol-
lowing: ∫

X

∫
X
K(x, y)f(x)f(y)dxdy ≥ 0, ∀f ∈ L2 (2.6)

PSD of integral operator implies non-negative eigenvalues and orthonormal eigenfunc-
tions. If ψj(x) are the orthonormal eigenfunctions of TK and λj be the corresponding



eigenvalue then:

K(x, y) =

NH∑
i=1

λiψi(x)ψi(y) (2.7)

λi ≥ 0 (2.8)∫
X
ψi(x)ψj(x)dx = δij (2.9)

Using (2.7) we get a decomposition in terms of kernel functions for a positive definite
integral operator as

K(x, y) =

NH∑
i=1

λiψi(x)ψi(y) (2.10)

= [
√
λ1ψ1(x), . . .

√
λNHψNH(x)][

√
λ1ψ1(y), . . .

√
λNHψNH(y)]T (2.11)

= φ(x)Tφ(y) (2.12)

where NH ≤ ∞. This defines the restriction that we talked about. For any kernel
function to be SPSD kernel, the associated integral operator should be SPSD. Moreover,
this gives an insight into the feature map φ. From the point of view of the kernel approx-
imation, if λis decay, then the kernel function can be approximated by the first few ψ [13,
Proposition 1.3.2].

2.2.2 Theory of Nystrom approximations

The Nystrom method is a numerical method to find the eigenfunctions corresponding
to an integral operator by replacing the integral with a weighted sum [14]. For finding
eigenfunction and eigenvalues of the kernel matrix a natural choice of weights comes from
the iid assumption. ∫

X
K(x, y)ψ(x)p(x)dx ≈ 1

n

n∑
i=1

K(xi, y)ψ(xi) (2.13)

= λψ(y)

For y = xk, k = 1 . . . n, the above turns into an eigenproblem for matrix Kn×n.

Kψ̄ = nλψ̄ (2.14)

where ψ̄ = [ψ(x1), . . . , ψ(xn)]T . Solving the eigenvalue problem for K, we obtain u
(n)
i

and λ
(n)
i as the eigenvectors and eigenvalues of Kn×n. From equation 2.14 and the

above solution, we can get an estimate for the ith eigenvalue of K as λi ≈
λ
(n)
i
n and

√
nu

(n)
i = [ψi(x1) . . . ψi(xn)]T . Putting this back in (2.13) gives an approximation of the

eigenfunctions:

ψi(y) =
1

nλi

n∑
j=1

K(xj , y)ψ(xj) =

√
n

λ
(n)
i

K(n)(y)Tu
(n)
i (2.15)



for i = 1 . . . n, where K(n)(y) = [K(x1, y), . . . ,K(xn, y)]T

To find a low rank approximation of the kernel matrix, we are looking for eigenvectors
u

(n)
i and eigenvalues λ(n)

i . In the standard Nystrom approximations proposed by Williams
and Seeger [10], u(n)

i is approximated by the eigenvectors of a smaller uniformly sampled
kernel matrix. They propose taking a uniform random sample of m points, finding the
eigenvectors of the corresponding m×m kernel matrix as u(m)

i and using them to approx-
imate u(n)

i .

ψi(y) =
1

m

m∑
j=1

K(xj , y)ψ(xj) =

√
m

λ
(m)
i

K(m)(y)Tu
(m)
i (2.16)

and λi =
λ
(m)
i
m =

λ
(n)
i
n and therefore ∀i = 1, . . . ,m,

λ
(n)
i =

n

m
λ

(m)
i (2.17)

By equating (2.15) and (2.16) we have:
√
n

λ
(n)
i

K(n)(y)Tu
(n)
i =

√
m

λ
(m)
i

K(m)(y)Tu
(m)
i

for i = 1, . . . ,m. Putting y = x1 . . . , y = xn

√
n

λ
(n)
i

Kn×nu
(n)
i =

√
m

λ
(m)
i

Cn×mu
(m)
i (2.18)

where Cn×m represents the sampled kernel matrix i.e Cn×m = Kn×nSn×m and Sn×m is a
column selection matrix.

√
n

λ
(n)
i

λ
(n)
i u

(n)
i =

√
m

λ
(m)
i

Cn×mu
(m)
i

u
(n)
i =

√
m

n

1

λ
(m)
i

Cn×mu
(m)
i (2.19)

The computational complexity of the whole process is O(m3) for solving the m × m
eigenproblem and O(nmr) for finding u(n)

i , i = 1, . . . r for a rank r approximation. Hence,
the overall time complexity of the Nystrom Approximation is O(m3+nmr). Using equation
(2.19) and simple algebra, a rank m approximation using Nystrom method can be written
as:

K̂m = Cn×m (W )−1
m×mC

T
n×m (2.20)

where W = STKS is a matrix formed by intersection of selected rows and columns of K.
Note that u(n)

i as defined in equation 2.19 is just an approximation to the eigenvectors



of K and is not necessarily orthonormal to u(n)
j . The eigenvectors and eigenvalues of the

Nystrom approximation will in general differ from that defined in equation 2.17 and 2.19.
It seems one can easily construct kernels where the spectrum does not decay using

(2.7). A natural question to ask here is whether kernel matrices really have a low rank
structure. The question was partially answered by Williams and Seeger [15], where they
demonstrate on multiple real life and artificial datasets that the spectrum decays rapidly
for commonly used Gaussian kernels.

2.2.3 Nystrom extensions

William and Seeger’s work was extended by Drineas and Mahoney [16] to handle cases
whereW is not invertible. Their extensions used a non-uniform sampling distribution based
on the input matrix. They also give theoretical error bounds for their approximations. If
the number of sampled columns (m) is greater than 4cε−2 then with high probability,

||K − K̂r||2 ≤ ||K −Kr||2 + ε
n∑
i=1

K2
ii (2.21)

where c is a constant depending upon the high probability parameter. Above bounds
aren’t very interesting for the Gaussian kernel matrix where

∑n
i=1K

2
ii = n. In general,

for any kernel matrix with bounded diagonal terms i.e. Kii ≤ c, we get the following high
probability guarantee,

||K − K̂r||2 ≤ ||K −Kr||2 +O

(
n√
m

)
(2.22)

The importance sampling based approach of Drineas et al. is expensive because non-
uniform sampling probabilities have to be computed.

Zhang et al. [17] proposed k-means clustering to select the columns rather than using
a random sampling scheme. Despite its simplicity, their method has shown better perfor-
mance than other Nystrom extensions. The approximation guarantees they give are based
upon the error in the clustering process, ec and the Frobenius norm of W−1. The right
hand side of the bound is minimum when the clusters are of the same size. In that case
the bound is:

||K − K̂r||F ≤ 4
n

m

√
Cnec + Cnec||W−1||F (2.23)

where C is a constant based on type of kernel. Note that, if W is approximately low rank
then ||W−1||F blows up and the bound becomes trivial.

Kumar et al. [18] proposed an extension of Nystrom based on taking the weighted
average of several runs of standard Nystrom. Their algorithm is easily parallelizable and
the parallel version can be run in approximately the same time as the standard Nystrom.
They also improve upon the error bounds of Drineas et al. by using tighter concentration
inequalities. Other attempts in the direction of improving error bounds of the Nystrom
method have been made by [19, 20, 21, 22]



2.3 Random Feature based Approximations

Random features for kernel approximations were introduced by Recht and Rahimi in their
seminal work [23]. Their results are based upon Bochner’s theorem, a classical theorem
from harmonic analysis which states that a shift invariant kernel if properly scaled can be
written as a Fourier transform of a non-negative measure.

K(x, y) = K(x− y) =

∫
Rd

p(w)ejw
T (x−y)dw (2.24)

This non-negative measure, p(w), interpreted as a probability distribution can be used to
generate random features which approximate the kernel function in expectation.

K(x− y) =

∫
Rd

p(w)ejw
T (x−y)dw

= Ew [zw(x)zw(y)] (2.25)

where zw(x) = cos(wTx) and zw(y) = cos(wT y) are the random features with w drawn
from the distribution p(w). p(w) can be computed as the inverse Fourier transform of the
kernel function.

Note that the above result is in expectation and to reduce the variance in approximation
one needs to sample multiple random features. However, the number of features required
to get a good approximation with high probability is rather large. For ε accuracy in
approximating K(x, y) one needs D = O

(
dε−2 log 1

ε2

)
number of random features. Lopez-

Paz et al. [24] show bounds on the spectral norm of the kernel approximation using D
random features by leveraging the matrix Bernstein inequalities [25, 26]. In particular they
show,

E
[
||K − K̂D||

]
≤
√

3n2 logD

D
+

2n log n

D
(2.26)

This can be easily extended to a high probability bound.

Lemma 1. Let K̂D be an approximation of K formed by using D random Fourier features.
If D ≥ 4n2+2nε

ε2
log 2n

δ then with probability greater than 1− δ,

||K − K̂D|| ≤ ε

Proof of lemma 1 is provided in appendix A. Note that the above bounds seem to
be very loose. For ε accuracy, the number of random Fourier features required is O(n2).
Computing this many random features defeats the purpose of approximation.

For a rank r approximation, one needs to compute r random Fourier features which re-
quire O(nrd) time, where d is the dimension of the input space. The number of parameters
required to store a rank r approximation are O(nr).

Random Fourier features approximate a shift-invariant kernel in expectation. Random
feature maps for several other classes of kernels have been proposed. These include [27,
28, 29] homogeneous, radial basis exponential and dot product kernels respectively.



2.4 Memory Efficient Kernel Approximation

Memory efficient kernel approximation (MEKA) [30] is a method to approximate shift
invariant kernel matrices. MEKA works on the observation that the kernel matrix becomes
low rank or high rank depending on the value of the kernel bandwidth (σ) parameter. For
example, for the Gaussian kernel function (also known as Radial Basis Function (RBF)),
given by,

K(x, y) = exp

(
−||x− y||

2

2σ2

)
(2.27)

if σ → ∞ then the kernel matrix is rank 1, on the other hand if σ = 0 kernel matrix
is full rank. Note that, a full rank kernel matrix is an identity matrix and hence sparse.
Entries of the Gaussian kernel are exponentially decaying scaled distances which implies
that decreasing the σ parameter will gradually take the off-diagonal terms to 0.

MEKA exploits this fact by clustering the data, Xn×d in the input space and approxi-
mating the kernel values corresponding to each cluster by using some kernel approximation
technique. Standard Nystrom is taken as the default approximation scheme in the origi-
nal paper. Inter-cluster values in the kernel matrix are then approximated based on the
inter-cluster distance. If the inter-cluster distance is higher than a threshold then the
corresponding kernel value is set to 0, otherwise it is approximated by solving a convex
optimization problem.

The time complexity of MEKA is the sum of the time complexity of clustering (Tc), the
time complexity of approximating inter-cluster blocks (TL) and the time complexity of ap-
proximating intra-cluster blocks. For c clusters and a rank k approximation of each block,
the time complexity for approximating the intra-cluster blocks is the sum of O(nmd) time
for computing the kernel values and O(nmk+ cm3) time for a rank k Nystrom approxima-
tion of each cluster, where m is the number of columns sampled to construct the Nystrom
approximation. Thus, the overall time complexity for a rank r = ck approximation is
O(nm(d+ k) + cm3 + TL + Tc).

The space complexity of a rank r approximate, constructed using c clusters depends
on the rank approximation (ki) of the corresponding ith cluster. Overall, the number of
parameters required to construct a rank r approximation is given as

c∑
i=1

niki +
∑
i,j

kikj (2.28)

where
∑c

i=1 ki = r and ni is the number of points in the ith cluster, returned by the
clustering process.

If each block is approximated by a rank k matrix, then ki = k,∀i ∈ [c]. Hence, The
number of parameters required to store a rank r = ck approximation is O(nk + (ck)2).
Note that the above computation assumes that ni ≥ k, if ni < k, then the ith block can
have a maximum rank of ni and hence, r < ck.



The Guarantees of MEKA’s approximations are based on those of standard Nystrom.
If the gap between the k+ 1st and the ck+ 1st singular values is large and the inter cluster
entries are small then MEKA has better approximation error than Nystrom which uses the
same space.

In most applications σ is tuned using cross-validation. MEKA claims to work irrespec-
tive of the value of σ. Though an interesting idea, we found the performance of this method
to be unstable (high variance) and difficult to tune, in our experiments. This behaviour
has been reported by other researchers as well [31, 32]

2.5 Leveraged Element Low Rank Approximation

Low rank approximation of a matrix is a fundamental problem in several scientific com-
munities including machine learning. The problem of low rank approximation with limited
number of passes over the matrix was first introduced by Frieze et al. in [33]. There has
since been a long track of work in this direction. The current state of the art algorithm,
known as Leverage Element Low Rank Approximation (LELA), was given by Bhojanapalli
et al. in [34]. Their algorithm runs in input sparsity time (O(nnz(M)) and gives guaran-
tees in spectral norm. This is in contrast with the previous best algorithm by Clarkson
and Woodruff [35], which also ran in input sparsity time but gave guarantees in the weaker
Frobenius norm.

LELA works by non-uniformly sampling a few entries of the matrix and then doing
a weighted alternating least square to perform matrix completion. Random samples are
chosen based on an weighted distribution computed using the column norms of the matrix
and the absolute value of entries of the matrix. LetMn×d be the matrix to be approximated.
Every element of M is sampled using a non-uniform distribution given by:

qij = m

(
0.5
||Mi||2 + ||M j ||2

(n+ d)||M ||2F
+ 0.5

|M |ij
||M ||1,1

)
(2.29)

where m is the desired sample size, Mi denotes a vector of elements of the ith row of M ,
M j denotes a vector of elements of the jth column of M and ||M ||1,1 =

∑
i,j |Mij |. This

kind of distribution is carefully chosen so that the L1 term gives importance to the heavier
element of the matrix, thus accounting for the possible high rank nature of the matrix.

LELA uses the sampled entries to perform a matrix completion step. It utilizes al-
ternating least square minimization for matrix completion. Let RΩ(M) be the sampled
matrix with m sampled entries and Ω be the set of sampled entries, then LELA solves the
following optimization problem over factors Un×r and Vd×r:

min
U,V

∑
Ω

1

qij

(
Mij − eTi UV T ej

)2 (2.30)

The problem is inherently non-convex in U and V but becomes convex if one of U or V
is fixed. LELA takes advantage of this by solving the problem alternatively. The authors



give a provable algorithm which converges to the optimal SVD solution if enough number
of entries ofM are sampled. In fact, it can be shown that the update step using alternative
least square is same as the update step of the power method.

One of the key elements of LELA is the initialization of U and V by an SVD of
sparse RΩ(M). It can be shown that this is a good initialization point by showing its
closeness to the optimal subspaces, U∗, V ∗, obtained by SVD. For Mn×d, LELA returns
a rank r approximation in O(nnz(M) + mr2) time, where m is the number of randomly
sampled entries of M . The number of parameters required to store the approximation is
O ((n+ d) r).





Chapter 3

Kernel Approximation using ALS

In this chapter, we will discuss our proposed algorithm for a low rank approximation of
the kernel matrix. This method can be seen as a modification of the LELA algorithm,
discussed in section 2.5. We start with the problem formulation and define some notation.
We then discuss the challenges in extending LELA for kernel matrix approximation. This
is followed by a description of our algorithm and a discussion on different initialization
and sampling strategies. In chapter 4 we discuss the theoretical guarantees of our method,
followed by empirical results in chapter 5.

3.1 Mathematical Notation

For the rest of the thesis following notation is used: A matrix is represented by the capital
letter (M) and a vector is represented by the small letter (u). Mij represents the (i, j)th

element of the matrix M , Mi represents the ith column of M and M j represent jth row
of M transposed. MT and M−1 represent the transpose and inverse of M , respectively.
nnz(M) denotes the count of the number of non-zero entries in the matrix M . ||M || and
||M ||F represent the 2-norm and the Frobenius norm of the matrix M . ||u||p gives the
p-norm of vectors u. At times, we mention the dimension of the matrix (Mn×n) as a
subscript for clarity.

Xn×d represents the data with n observations in d dimensional space. K is used to
represent the n × n kernel matrix corresponding to X. Ω is used to represent the set of
indices corresponding to the sampled entries of the matrix. RΩ(K) denotes the sampled
version of K, with RΩ(K)ij = Kij if (i, j) ∈ Ω and 0 otherwise. m = |Ω|, denotes the
number of samples.

The problem formulation was done in section 1.3. Here it is presented for the sake
of completeness. Given n input points x1, . . . , xn in input space X ⊆ Rd and an SPSD
kernel function K : X × X → R , the associated kernel matrix is a n × n matrix with
Kij = K(xi, xj). The problem of rank r approximation of matrix K can be stated as
finding Un×r such that

min
U∈Rn×r

∑
i,j

(
Kij − eTi UUT ej

)2 (3.1)

where ei is the n× 1 column vector with 1 at ith coordinate and 0 at other coordinates.



3.2 Extending LELA

LELA was discussed in section 2.5 as an approximation method for the low rank ap-
proximation of any general matrix. As discussed earlier, the time complexity for running
LELA is

(
O(nnz(K) +mr2

)
. Owing to the possibly dense nature of the kernel matrix,

nnz(K) = O(n2). Clearly, this leads to scaling issues for large data sets. The major bot-
tleneck in LELA is the importance sampling step which requires computation of the row
and column norms of the matrix and therefore forces computation of the complete ker-
nel matrix (see equation 2.29). In section 3.4, we propose and compare several sampling
strategies, which can be computed efficiently.

The second computational bottleneck in extending LELA comes from the initialization
step. The initialization step of LELA requires SVD of the sparse matrix RΩ(K). Nu-
merically, special iterative methods have been designed to find few large eigenvalues and
eigenvectors of a large sparse matrix. However, if the number of eigenvectors required is
large then these methods don’t give good empirical performance. We propose and compare
several efficient initialization strategies to overcome this obstacle in section 3.5.

As LELA is a general matrix approximation algorithm it provides an approximation of
the form UV T . However, for SPSD kernel matrix we need factorization of the form UUT .
This issue is tackled by solving the optimization problem for U and V and then taking
average of U and V . We show in our results that this strategy leads to low errors.

Once sampling is done the problem is solved by minimizing least square error over the
sampled entries (equation 2.30). The hope is that the learned U ,V matrix will provide
good approximation for the unsampled entries as well. Though, ALS solves a convex
optimization problem in each iteration, it involves solving n least square problems in each
iteration. Therefore, the time complexity of running each iteration is O(nr3) which can
become challenging for large r.

3.3 Basic ALS Algorithm

Algorithm 1 shows the basic skeleton of our method. Further details are later filled in
based on the empirical evidence. In step 1, RΩ(K) is the sparse matrix created based
on some sampling scheme. The solution is initialized as Û (0) following some initialization
strategy in step 2. Step 4 and 5 are the iterative steps of ALS.

Note that, step 4 solves a weighted least square problem with weight of each sampled
entry being the inverse of the probability of sampling that entry i.e. wij = 1

pij
, where pij is

the probability of sampling the (i, j)th entry. One advantage of taking a weighted objective
function is that in expectation the error value is same as that of non weighted objective
function created by sampling all the entries. For the uniform distribution this probability
based weight can be ignored. Also, note that the problem solved in step 4 of algorithm 1
is a regularized least square problem and hence a convex optimization problem. For ease



Algorithm 1 Basic Algorithm with ALS
Input: data X, target rank r
Output: Ûn×r
1: Sample K to create RΩ(K)

2: Initialize Û (0)

3: for t = 0, . . . , T − 1 do

4: V̂ (t+1) ← argminVn×r

∑
(i,j)∈Ωwij

(
Kij − eTi Û (t)V T ej

)2
+ λ||V ||2F

5: Û (t+1) ← 1
2

(
V̂ (t+1) + Û (t)

)

of computation it can be sub-divided into n independent least square problems as:

min

n∑
j=1

 ∑
i:(i,j)∈Ω

wij

(
Kij − eTi Û (t)V j

)2
+ λ||V j ||2

 (3.2)

Each of these n problems can be solved independently for V j , j = 1, . . . , n. This lets us
use a parallel solver.

Note that we use a regularized version of problem 2.30. This is to prevent over fitting.
As the optimization objective function in 2.30 focuses solely on the sampled entries, there
is no check over the approximation of unsampled entries. If the number of entries sampled
are not sufficient, this may cause the optimization process to take the unsampled entries to
large values. Regularization ensures that the unsampled entries don’t grow unrestrained.
The λ parameter can be tuned using croos-validation or a test set.

Solving each of the n optimization problems in 3.2 takes O(|Ωj |r2 +r3) time, where |Ωj |
is the number of entries sampled from the jth column of K. Thus, overall time complexity
of running 1 iteration of the for loop in step 3 of the above algorithm is O(|Ω|r2 + nr3).

3.4 Sampling Schemes

In this section we describe several sampling schemes which can be computed efficiently.
The results of the sampling schemes are discussed later in section 5.2.1.

1. L1 sampling: Probability of sampling (i, j)th element is given by

pij = min

(
1,
m|Kij |
||K||1

)
(3.3)

where m is the requisite number of samples. This kind of sampling gives more impor-
tance to the heavier elements of the matrix, ensuring that the sampled sparse matrix
takes care of the arbitrary high rank nature of the original matrix. Computationally,
3.3 requires calculating the entire kernel matrix and therefore is infeasible for large
datasets. Note that the expected number of samples using the above distribution is
m.



2. L2 sampling: Probability of sampling (i, j)th element is given by

pij = min

(
1,
m
(
||Ki||2 + ||Kj ||2

)
2||K||2F

)
(3.4)

This requires computation of the entire kernel matrix and is therefore infeasible to
compute for large datasets. Note that the expected number of samples using the
above distribution is m.

3. Approximate L2 sampling: We can use the random Fourier features [23] to ap-
proximate the kernel matrix and then use this approximated matrix to further ap-
proximate row and column norms. Let Xn×d be the data matrix, then the random
Fourier features corresponding to ith data point xi is given by

φ(xi) =

√
2

D

[
cos(ωT1 xi + b1) . . . cos(ωTDxi + bD)

]
(3.5)

where D is the total number of random features and wi random vectors are drawn
from a distribution based on the inverse Fourier transform of kernel function K. For
shift-invariant kernels K(xi, xj) = E

[
φ(xi)

Tφ(xj)
]
.

In order to compute 3.4, we need to approximate ||Ki||.

||Ki||2 ≈
n∑
j=1

(
φ(xi)

Tφ(xj)
)2 (3.6)

=
n∑
j=1

(
φ(xi)

Tφ(xj)φ(xj)
Tφ(xj)

)
(3.7)

= φ(xi)
T

 n∑
j=1

φ(xj)φ(xj)
T

φ(xi) (3.8)

Computing D random Fourier features, as in equation 3.5, requires O(ndD) time,
while computing the column norm via equation 3.8 takes O(nD2) time. Typically
D � d, thus, we can calculate row leverage scores in O(nD2) time for all i ∈ [n], by
calculating and storing

∑n
j=1 φ(xj)φ(xj)

T . The same follows for the column leverage
scores.

4. Uniform: Entries are sampled randomly uniformly from the matrix. This is the
most efficient way of sampling as it doesn’t require computation of any distribution.

5. Uniform+ Diagonal (U+D): Similar to uniform clustering except diagonal terms
are added deterministically.

6. Clustering: In this method k-means clustering of input data, Xn×d, is performed.
Kernel values corresponding to the data point closest to the centroid of each cluster



are added deterministically to the sample. For each cluster center xci , kernel value
corresponding to interaction of ci with rest of the data points is added to the sample.

Ω← Ω ∩ {(ci, 1), (ci, 2) . . . , (ci, n), (1, ci), (2, ci), . . . , (n, ci)}

Number of clusters to be created depends on number of elements to be sampled.

7. Uniform+clustering(U+C): Half the entries are chosen by uniform sampling and
rest of the entries are sampled using the clustering procedure.

8. Uniform+clustering+diagonal (U +C+D) Similar to U +C but diagonal term
of the kernel matrix are added deterministically to the sample.

Section 5.2.1 shows an empirical comparison of the above sampling schemes. In sum-
mary, we found that U + C + D performs better than other sampling schemes across a
range of kernel matrices.

3.5 Initialization Strategies

Initialization of iterate Û (0) in step 2 of algorithm 1 is an important part of our method.
A good initialization step ensures low errors in a few iterations. In this section, we com-
pare several initialization strategies viz. random, Nystrom, kNystrom and sparse SVD.
Following is a brief explanation of the initialization strategies.

1. Random: Each element of Û (0) is chosen uniformly randomly from [0, 1].

2. Nystrom: This method selects 4r columns uniformly and performs Nystrom ap-
proximation. Results of Nystrom approximations are passed as an initialization to
ALS.

3. KNystrom: This method selects 4r columns based on k-means clustering of the
data in the input space. Results of k-means Nystrom are passed as an initial iterate
to ALS.

4. Sparse SVD: Sparse SVD of the sampled kernel matrix RΩ(K) is done to find the
top-r scaled singular vectors.

An empirical comparison of different initialization strategies is shown in section 5.2.2.
We found that kNystrom based initialization gives the best results.

3.6 ALS for kernel approximation

Using empirical evidence from section 3.4 and 3.5, we are now ready to give the final version
of our algorithm. In this version, we have filled in the following details about sampling
and initialization.



1. Sampling using a mixture of uniform sampling, clustering and deterministically se-
lecting the diagonal terms is done.

2. K-means based Nystrom is used for initialization.

Algorithm 2 gives the final algorithm.

Algorithm 2 ALS based algorithm for kernel low rank approximation
Input: data X, target rank r, sample size m
Output: Ûn×r
1: Ω← Sample m

4 elements (i, j) ∈ [n]× [n]

2: for each (i, j) ∈ Ω do
3: Ω← Ω ∪ (j, i)

4: Ω← Ω ∪ (i, i), ∀i ∈ [n]

5: Create m
2n clusters using kmeans(X)

6: for each cluster center i do
7: Ω← Ω ∪ (i, j), ∀j ∈ [n]

8: Initialization: Û (0) = KNystrom(X, 4r)

9: for t = 0, . . . , T − 1 do

10: V̂ (t+1) ← argminVn×r

∑
(i,j)∈Ω

(
Kij − eTi Û (t)V T ej

)2
+ λ||V ||2F

11: Û (t+1) ← 1
2

(
V̂ (t+1) + Û (t)

)
Step 1 to 3 sample half the required number of elements uniformly. Uniform sampling

is done by sampling both i and j uniformly from [0, n] and rounding them to the next
higher integer. Note that the sampling is done in a way to ensure that the sampled matrix
is symmetric. In step 4, diagonal entries are added deterministically. Clustering in step
5 is done on standardized zero mean and unit variance data. As shown in equation 3.2,
the optimization problem in step 10 of algorithm 2 is broken down into n independent
least square problems. Each of these sub-problems is solved in parallel using a conjugate
gradient descent based iterative solver. The advantage of using an iterative solver over
classical matrix factorization techniques is that it allows for a warm start for the solution
leading to quicker convergence. For example, in the (t+ 1)th iteration, we can pass U (t) as
an initial estimate of V (t+1).

3.6.1 Time and space complexity

In terms of time complexity:

• Step 1 to 4, take O(|Ω|) time for uniform sampling.

• If the number of clusters is c, each iteration of k-means clustering takes O(ndc) time.
For us, c = |Ω|

2n and thus the time for clustering in step 5 is O(|Ω|dTC), where TC is
the number of iterations of k-means.



• K-means Nystrom initialization in step 8 takes O(r3+nr2+rdTc) time for performing
k-means with 4r clusters and computing the approximation.

• The ALS procedure in step 9 to 11 takes O(|Ω|r2 +nr3) in each iteration. Note that
by solving the optimization problem approximately by using an iterative solver like
conjugate gradient method, the r3 term can be avoided.

Thus the overall time complexity of our method is

O
(
|Ω|dTC + rdTc +

(
|Ω|r2 + nr3

)
TALS

)
where TALS is the number of iterations of ALS. In our experiments we have found, TALS of
around 3 is enough to give good results. Also typically,

(
|Ω|r2 + nr3

)
TALS will dominate

other terms and time complexity will reduce to O
(
|Ω|r2 + nr3

)
. In our experiments, we

have found that number of sampled elements scale as O(rn log n), therefore, practically
our algorithm has a time complexity of O(n log nr3) for a rank r approximation.

In terms of space complexity, for storing a rank r approximation we require O(nr)

space. Table 3.1 shows the time complexity of other kernel approximation algorithms with
almost the same space constraints. Note that, m is the number of columns sampled in
Nystrom, cm is the input number of clusters in MEKA and TLm and TCm are the time
required for approximating off-diagonal blocks and clustering, respectively in MEKA.

Algorithm Space complexity Rank Time Complexity
Nystrom O(nr) r O(m3 + nmr) ≈ O(nr2)

SVD O(nr) r O(n2r)

ALS O(nr) r O
(
|Ω|r2 + nr3

)
≈ O(n log nr3)

MEKA O(nr + c2
mr

2) cmr O(nr2 + cmm
3) + TLm + TCm

Table 3.1: Comparison of time and space complexities of different algorithms for kernel
approximation

Clearly, SVD is the slowest among these algorithm. MEKA seems slower than Nys-
trom, but note that it gives a higher rank approximation with almost the same number
of parameters. ALS is slower than most of the algorithms, but as we will see in section
5.2.3 it has lower approximation errors. An empirical comparison between the algorithms
is shown in section 5.2.3. We also do a comparison of kernel approximation to kernel ridge
regression in section 5.3





Chapter 4

Theoretical Analysis

In this chapter we show theoretical results for the approximation of kernel matrix using
ALS. The structure of the proofs is directly borrowed from the low rank matrix completion
proofs in [36].

4.1 Preliminaries

This section introduces the definitions and the notation used in the following sections. Let
M be any general matrix. Let UM and VM denote the left and right singular vectors of M
such that M = UMΣMV

T
M . Let ui and vi be the ith column of U and V , respectively. The

best rank r approximation ofM is denoted byMr and is formed by the top-r left and right
singular vectors ofM , Mr = U

(r)
M Σ

(r)
M V

(r)T
M , where Σ

(r)
M ∈ Rr×r is a diagonal matrix formed

by taking top-r diagonal entries of ΣM in the original order. Similarly, ΣM (r) ∈ Rr×r is a
diagonal matrix formed by taking bottom-r diagonal entries of ΣM in the original order.
For rank(M) = k, the pseudo-inverse is defined as M † =

∑k
i=1

1
σi
uiv

T
i . ||M || and ||M ||F

denote the spectral and the Frobenius norm of matrix M, respectively.
For rank r approximation, Û t ∈ Rn×r denotes the solution returned by ALS at the end

of the tth iteration. U t denotes an orthonormal basis spanning the column space of Û t.
The optimal rank r approximation of K is Kr = U∗Σ

(r)
K U∗T , where U∗ = U

(r)
K .

The notion of matrix coherence measures the uniformity of entries of a matrix. Loosely
speaking, incoherence is a measure of closeness of the orthonormal basis spanned by the
column space of a matrix to the canonical basis. Formally, incoherence can be defined as
following:

Definition 1. [37] A matrix M ∈ Rn×m is incoherent with parameter µr if:

||u(i)|| ≤ µr
√
r√
n

, ∀i ∈ [n], ||v(j)|| ≤ µr
√
r√
n

,∀j ∈ [m], (4.1)

where M = UΣV T is the SVD of M and u(i),v(j) denote the ith row of U and the jth row
of V respectively.

Incoherence parameter µr is upper bounded by
√

n
r when the top r singular vectors are

exactly same as the canonical basis vectors. It is lower bounded by 1 when all the entries



are equal to 1√
n
.

1 ≤ µr ≤
√
n

r
(4.2)

Previous literature on matrix completion shows that highly coherent matrices are difficult
to recover by random sampling and matrix completion [37].

Principal angles between subspaces is a common way to quantify the distance between
subspaces.

Definition 2. [11] Given two matrices Û , Ŵ ∈ Rn×r, the principal angle based distance
between the subspaces spanned by the columns of Û and Ŵ is given by:

dist(Û , Ŵ ) = ||UT⊥W || = ||W T
⊥U || (4.3)

where U and W are orthonormal bases spanning the column space of Û and Ŵ respectively.
U⊥ and W⊥ denote the orthonormal basis spanning the subspace perpendicular to Û and
Ŵ respectively.

In fact, dist(Û , Ŵ ) = sin Θ = ||UT⊥W ||, where Θ is the largest principal angle between
subspaces U and W . We use the following basic inequality from linear algebra in our
proofs.

dmin||A|| ≤ ||AD|| ≤ dmax||A|| (4.4)

||AT || = ||A|| (4.5)

for any matrix A and any diagonal matrix D with dmin and dmax as the lowest and the
highest entries of matrix D, respectively.

4.1.1 Proof summary

We make assumptions regarding the coherence of the kernel matrix, which is a standard
assumption in matrix completion literature. The proof proceeds by showing that the
subspaces spanned by the solution of ALS gets iteratively closer to the optimal subspace
spanned by the top-r singular vectors of the original kernel matrix. We use the following
inductive structure for the proof:

1. Base case: Show that U0 is close to U∗ and U0 is incoherent

2. Inductive hypothesis: Assume U t is close to U∗ and U t is incoherent

3. Inductive step: Show that U t+1 is close to U∗ and U t+1 is incoherent



4.2 Initialization

In this section we show that the distance between the initial iterate, Û0 returned by the
Nystrom approximation is close to U∗. As the initialization is done using the Nystrom
approximation, we take a closer look at the structure of the Nystrom approximation.

As K is SPSD we can factorize it as

K = XTX (4.6)

where, X = Σ
1
2
KU

T
K (4.7)

Let S ∈ Rn×m be a column selection matrix, then STKS ∈ Rm×m is the matrix formed
by the intersection of the selected m rows and the m columns of K. The rank r Nystrom
approximation is of the form

K̂ = KS(STKS)†rS
TK (4.8)

This can be simplified in terms of B = XS = UBΣBV
T
B .

K̂ = XTXS(STXTXS)†rS
TXTX (4.9)

= XTB(BTB)†rB
TX

= XTUBΣBV
T
B

(
VBΣBU

T
BUBΣBV

T
B

)†
r
VBΣBU

T
BX

= XTUBΣBV
T
B

(
VBΣ2

BV
T
B

)†
r
VBΣBU

T
BX

= XTUBΣBV
T
B

(
V

(r)
B Σ

(r)
B

−2
V

(r)T
B

)
VBΣBU

T
BX

= XTU
(r)
B U

(r)T
B X

= XTUB′UB′
TX (4.10)

= XTPB′X (4.11)

where in equation 4.10, UB′ = U
(r)
B . Note that, PB′ = UB′U

T
B′ is the projection matrix

into the column space spanned by the top r columns of XS. From equation 4.7, it can be
observed that the column space of X is Rn. If S samples all the columns of X and r = m

then C(B′) = C(X) and PB′ = In. This leads to the exact recovery of the kernel matrix.
However, S can sample at most m columns of K and PB′ can at most be rank r. If S is

such that PB′ =

(
Ir 0

0 0

)
then,

K̂ = XTPB′X

= UKΣ
1
2
K

(
Ir 0

0 0

)
Σ

1
2
KU

T
K

= UK

(
Σ

(r)
K 0

0 0

)
UTK

= U
(r)
K Σ

(r)
K U

(r)T
K = Kr (4.12)



Thus, setting PB′ =

(
Ir 0

0 0

)
gives the optimal rank r approximation. This observation

gives us the intuition that the distance between K and K̂ may be directly related to the

distance between PB′ and

(
Ir 0

0 0

)
. Further we show the relationship of this distance with

K and K̂ in the lemma below.

Lemma 2. For rank r Nystrom approximation, the distance between the optimal subspace,
U∗ and the subspace spanned by the columns of K̂, UK̂ is bounded by:√

σn(K)

σ1(K̂)
||UB′ (n−r)|| ≤ dist(U∗, UK̂) ≤

√
σr+1(K)

σr(K̂)
(4.13)

where UB′ (n−r) ∈ Rn−r×r is the last n− r rows of orthonormal matrix UB′ ∈ Rn×r.

Proof. Let SVD of K̂ be K̂ = UK̂ΣK̂U
T
K̂

and SVD of K be K = UKΣKU
T
K , then by

equation 4.10

UK̂ΣK̂U
T
K̂

= UKΣ
1
2
KUB′U

T
B′Σ

1
2
KU

T
K (4.14)

Multiplying by U∗⊥ on both sides, taking norm and using ||ATA|| = ||A||2

||U∗⊥
TUK̂Σ

1
2

K̂
|| = ||U∗⊥

TUKΣ
1
2
KUB′ || (4.15)

As U∗⊥ is the last n− r columns of UK , RHS above can be manipulated to get

U∗⊥
TUKΣ

1
2
KUB′ = [0 In−r]

Σ
(r)
K

1
2 0

0 Σ
(n−r)
K

1
2

UB′

= Σ
(n−r)
K

1
2UB′ (n−r) (4.16)

Using equation 4.15 and 4.24 with inequality 4.4 and definition of distance between
subspaces, we get the following result:√

σn(K)

σ1(K̂)
||UB′ (n−r)|| ≤ sin Θ ≤

√
σr+1(K)

σr(K̂)
||UB′ (n−r)|| (4.17)

Next, we argue that ||UB′ (n−r)|| ≤ 1. As C(B′) ⊆ C(X), using proposition 8.5 from [38]

||PB′M || ≤ ||PXM || = ||M ||, ∀M (4.18)



where the last equality follows from equation 4.7. Consider M =

(
0

In−r

)
,

||PB′M || = ||UB′UTB′

(
0

In−r

)
|| = ||UTB′

(
0

In−r

)
|| = ||UTB′ (n−r)|| = ||UB′ (n−r)||

≤ ||

(
0

In−r

)
|| = 1 (4.19)

The second equality follows from the unitary invariance of the spectral norm, the fourth
equality follows from equation 4.5 and the last inequality follows from equation 4.18. This
completes the proof.

As a consequence of the above theorem, if the rth eigenvalue of K and K̂ are close and
the ratio of consecutive eigenvalues σr(K)

σr+1(K) is large then the Nystrom approximation is
"good". This is reminiscent of the bounds derived by Yang et al. in [39]. They show that
for a large eigengap (σr − σr+1), spectral error can be bounded with high probability as

||K − K̂|| ≤ ||K −Kr||+O
(n
r

)
(4.20)

Indeed, by assuming large eigengap in the spectrum of K and using theorem 6 from
Yang etal. [40], we get the following result:

Corollary 1. Let ∆ = σr(K)
σr+1(K) be the ratio of consecutive eigenvalues of K. If

σr(K)− σr+1(K) ≥ 12 ln(2/δ)√
r

then with probability 1− δ

dist(U∗, UK̂) ≤
√

3

1 + 2∆
(4.21)

Proof. By theorem 6 (Yang et al. [40]), we have for σr(K) − σr+1(K) ≥ 12 ln(2/δ)√
r

with
probability 1− δ,

σr(K̂) ≥ 2

3
σr(K) +

1

3
σr+1(K) (4.22)

Substituting in lemma 2 we get the stated result.

Next, we show the incoherence of the initial iterate Û (0). We assume U∗ to be µ-
incoherent. We show that coherence of UK̂ is Cµ, where C depends on the condition
number of the kernel matrix.



Lemma 3. Suppose U∗ is incoherent with parameter µ and UK̂ is the orthonormal basis

of the rank r Nystrom approximation K̂, then K̂ is incoherent with parameter
√

σ1(K)

σr(K̂)
µ.

Further, if

σr(K)− σr+1(K) ≥ 12 ln(2/δ)√
r

then with probability greater than 1 − δ, K̂ is incoherent with parameter
√

1.5Kµ where
K = σ1(K)

σr(K) is the condition number of best rank r approximation of K.

Proof. Using equation 4.10 and definition of SVD, we get

UK̂ΣK̂U
T
K̂

= UKΣ
1
2
KUB′U

T
B′Σ

1
2
KU

T
K (4.23)

Multiplying by eTi on both sides, taking norm and using ||ATA|| = ||A||2

||eTi UK̂Σ
1
2

K̂
|| = ||eTi UKΣ

1
2
KUB′ || (4.24)

≤ ||eTi UKΣ
1
2
K ||||UB′ ||

≤
√
σ1(K)||eTi UK || (4.25)

where last inequality follows from equation 4.4 and the fact that orthonormal matrices
have unit norm. Also,√

σr ˆ(K)||eTi UK̂ || ≤ ||e
T
i UK̂Σ

1
2

K̂
|| ≤

√
σ1(K)||eTi UK || (4.26)

⇒ ||eTi UK̂ || ≤

√
σ1(K)

σr(K̂)
||eTi UK ||

µr(K̂) ≤

√
σ1(K)

σr(K̂)
µ(K) (4.27)

This completes the first part of the proof. The second part follows directly from the first
part and equation 4.22.

4.3 Iterations

The inductive hypothesis is the coherence of Û (t) and closeness of Û (t) to U∗, in step 10 of
algorithm 2. We show that each step of the iteration geometrically reduces the distance to
the optimal subspace while preserving the coherence of the iterate. This result is borrowed
directly from theorem 5.1 of Jain et al. [36]. Note that, like Jain et al., we also assume
uniform sampling through out the proof.

Theorem 1 (Theorem 2.5 and 5.1 from [36]). In the sampling step, let every entry of K
be sampled uniformly and independently with probability,

p ≥ C

(
σ1(K)
σr(K)

)2
µ2r2.5 log n log r||K||F

ε

nδ2
2r

(4.28)



where δ2r ≤ σr(K)
12rσ1(K) and C ≥ 0 is a global constant. The (t+ 1)th iterate V̂ t+1 satisfies

the following with high probability:

dist
(
V̂ (t+1), U∗

)
≤ 1

4
dist

(
Û (t), U∗

)
(4.29)

As a corollary to the above theorem, we show that step 11 of algortihm 2, doesn’t cause
much change in the distance.

Corollary 2. Under the conditions of theorem 1,

dist
(
Û (t+1), U∗

)
≤ 5

8
dist

(
Û (t), U∗

)
(4.30)

Proof. By step 11 of algorithm 2 we have,

Û (t+1) =
1

2

(
V̂ (t+1) + Û (t)

)
Multiplying by U∗⊥ and taking norm,

||U∗⊥Û (t+1)|| =
∣∣∣∣∣∣∣∣12 (U∗⊥V̂ (t+1) + U∗⊥Û

(t)
)∣∣∣∣∣∣∣∣

≤ 1

2

(
||U∗⊥V̂ (t+1) ||+ ||U∗⊥Û (t) ||

)
=

1

2

(
dist

(
V̂ (t+1), U∗

)
+ dist

(
Û (t), U∗

))
≤ 5

8
dist

(
Û (t), U∗

)
(4.31)

where the last inequality follows from theorem 1

Finally, we show the incoherence of Û (t+1). The incoherence of V̂ (t+1) follows directly
from lemma 5.5 from Jain et al. [36].

Lemma 4 (Lemma 5.5 from [36]). Let Û (t) be µ1 incoherent. Then with probability at least
1− 1

n3 , iterate V̂ (t+1) is also µ1 incoherent.

Using lemma 4, we can show the incoherence of iterate Û (t+1).

Corollary 3. Let Û (t) be µ1 incoherent. Then with probability at least 1 − 1
n3 , iterate

Û (t+1) is also µ1 incoherent.

Proof. By step 11 of algorithm 2 we have,

Û (t+1) =
1

2

(
V̂ (t+1) + Û (t)

)
(4.32)

By lemma 4 and the definition of incoherence we have,

||eTi Û (t)|| ≤ µ1

√
r

n
, ∀i ∈ [n] (4.33)

||eTi V̂ (t+1)|| ≤ µ1

√
r

n
, ∀i ∈ [n] (4.34)



Using in equation 4.32,∣∣∣∣∣∣eTi Û (t+1)
∣∣∣∣∣∣ =

1

2

∣∣∣∣∣∣(eTi V̂ (t+1) + eTi Û
(t)
)∣∣∣∣∣∣

≤ 1

2

(∣∣∣∣∣∣eTi V̂ (t+1)
∣∣∣∣∣∣+

∣∣∣∣∣∣eTi Û (t)
∣∣∣∣∣∣)

≤ µ1

√
r

n
, ∀i ∈ [n] (4.35)



Chapter 5

Empirical Results

5.1 Exploring the Nature of the Gaussian Kernel Matrix

A kernel matrix can be high rank or low rank, coherent or incoherent depending on the
kernel function. For shift invariant kernel functions, these properties are controlled by
the scale parameter. For the Gaussian kernel function described in equation 5.1, these
properties are controlled by the bandwidth parameter, σ. In this section, we will empirically
show the effect of the bandwidth parameter on the nature of the Gaussian kernel matrix.

K(x, y) = exp

(
−||x− y||

2

2σ2

)
(5.1)

5.1.1 Rank versus bandwidth parameter

The nature of the Gaussian kernel matrix changes from high rank to low rank as the sigma
parameter is increased from 0 to ∞. This behaviour can be observed by studying the
variation of the stable rank of the kernel matrix with σ for several real life datasets . The
stable rank of a matrix M is defined as:

Rs =
||M ||2F
||M ||2

(5.2)

= 1 +
σ2

2

σ2
1

+ . . .+
σ2
n

σ2
1

(5.3)

where σi are the singular vectors. The stable rank of a matrix is a lower bound on the true
rank of the matrix. It gives an idea of how quickly the spectrum decays relative to σ1.

Figure 5.1 shows the variation of stable rank with the sigma parameter for several
datasets. For uniformity, we consider the ‘small’ version of all the datasets which is com-
posed by sampling 1000 observations uniformly from the dataset. Note in figure 5.1a that
the stable rank falls rapidly from 1000 to 1 as the sigma parameter is increased. The quick
descent to stable rank 1 indicates that as sigma is increased, the largest eigenvalue starts
dominating the other eigenvalues. Figure 5.1b shows that for sigma based on the mean of
pairwise distance between data (σmean), the kernel matrix has a low rank nature as stable
rank approaches 1. This is important as we have noticed in our experiments that the tuned
σ value for kernel ridge regression is close to σmean (see table 5.13). This kind of behaviour
suggests the low rank nature of the kernel matrix at the tuned values and motivates the
use of a low rank approximation.
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Figure 5.1: stable rank vs σ for different datasets. Left: Results for sigma based on 0 to
2 times of mean of pairwise distance. Right: Magnified view, results for sigma based on 0
to 2 times of mean of pairwise distance.

5.2 Kernel Approximation via ALS

5.2.1 Comparison of sampling schemes

In section 3.4, several sampling schemes were discussed. In this section we give an empirical
comparison between these schemes. Table 5.1 to table 5.5 shows the comparison of different
sampling schemes across datasets. The tables report the mean spectral error (||K − K̂||)
over 10 independent runs of ALS. Note that kNystrom is used as the initialization step
here. The datasets we compare here are: ’ijcnn small’, ’german scaled’ and ’satimage
scaled’. For a description of the datasets see appendix B. The best sampling scheme for
each sigma parameter is highlighted in bold.

It is worthwhile to discuss the nature of the kernel matrix for extreme values of the
sigma parameter. At the lower end of the spectrum, the kernel matrix is nearly an identity
matrix. If we use a distribution similar to equation 3.3 for such matrices, the probability
of sampling off-diagonal elements is very low and these are almost never sampled. This
leads to the problem of not being able to sample the requisite number of samples. A
work around is to raise the value of m, leading to a rise in the probability of sampling
off-diagonal elements. However, such a method gives very high weights to the off-diagonal
terms, leading to high errors. At the other end of the spectrum are the kernel matrices for
high values of sigma. For very high sigma values, the kernel matrix is a rank 1 matrix with
all entries as 1. For such matrices, L1, L2 or uniform sampling will behave in the same
way as can also be seen from the simulations.

Table 5.1 shows the errors for ’ijcnn1 small’ dataset for a rank 50 approximation.



Approximately 49n log n samples were taken for each run. The uniform sampling scheme

sigma L1 L2 L2 approx Uniform Clustering U + C U +D U + C +D

0.212 5.871 28780 27152 13.96 949.6 13.13 251.2 20.87
0.424 12121 27.25 29.35 5.218 9.942 5.271 5.895 6.241
0.848 4.898 2.205 2.107 2.030 3.900 2.314 2.085 2.212
1.061 1.449 1.226 1.238 1.171 2.121 1.368 1.209 1.340
1.591 0.362 0.355 0.354 0.363 0.631 0.398 0.357 0.392
3.182 0.030 0.030 0.030 0.030 0.050 0.033 0.031 0.033
5.303 0.004 0.004 0.004 0.004 0.007 0.005 0.004 0.004

Table 5.1: Comparison of different sampling schemes across sigma parameter for ’ijcnn1
small’ dataset rank 50 approximation. Sample size ≈ 49n log n

performs better than any other sampling scheme for most of the sigma values. Note
that the performance of L2 and L2 approximation are almost similar, indicating that the
approximation using Fourier features is not bad. Table 5.2 shows the errors for ‘ijcnn1
small’ dataset for a rank 200 approximation. Here as well, the performance of L2 and L2

approximation is similar. Interestingly, U+C+D performs better than any other sampling
scheme for most of the moderately low values of sigma parameter.

sigma L1 L2 L2 approx Uniform Clustering U + C U +D U + C +D

0.212 1.603 1477 141.4 3.979 6.635 1.766 3.087 2.423
0.424 21.62 1.332 1.417 0.980 1.197 0.876 0.959 0.870
0.848 0.362 0.219 0.214 0.181 0.183 0.161 0.164 0.155
1.061 0.118 0.094 0.097 0.078 0.0761 0.072 0.075 0.069
1.591 0.014 0.016 0.016 0.014 0.0134 0.014 0.013 0.013
3.182 5.9e-04 6.1e-04 5.8e-04 5.8e-04 5.8e-04 5.7e-04 5.8e-04 5.6e-04
5.303 6.8e-05 6.9e-05 7.0e-05 6.8e-05 7.0e-05 6.9e-05 7.0e-05 6.8e-05

Table 5.2: Comparison of different sampling schemes across sigma parameter for ‘ijcnn1
small’ dataset, rank 200 approximation. Sample size ≈ 120n log n

Similar observations are made for the ‘german scaled’ dataset in table 5.3 and table
5.4. For low rank approximation (rank 50), uniform and L2 sampling out perform other
sampling schemes. Uniform is either better or very close in error to the L2 sampling scheme.
For higher rank approximation (rank 200), U +C or U +C +D does better than uniform.
For ‘satimge scaled’ dataset, table 5.5 reports the errors for rank 100 approximation. For
this dataset U + C +D performs better of close to the the best scheme.



Based on these observations, we choose U + C + D as the preferred sampling scheme
when the requisite rank approximation is greater than 50. For rank approximation less
than 50, sampling is done using the ‘uniform’ distribution.

sigma L1 L2 L2 approx Uniform Clustering U + C U +D U + C +D

0.649 18951 795 339.4 303.0 7476 139.1 1676 1844
1.299 6389 5.721 4.912 3.668 6.140 4.262 4.924 9.485
2.598 6.613 3.067 3.140 3.071 3.531 3.131 3.098 3.324
3.247 2.388 2.114 2.065 2.094 2.376 2.170 2.114 2.163
4.871 0.725 0.719 0.714 0.712 0.798 0.739 0.717 0.732
9.742 0.064 0.063 0.063 0.063 0.072 0.066 0.065 0.065
16.236 0.009 0.010 0.009 0.009 0.010 0.009 0.009 0.009

Table 5.3: Comparison of different sampling schemes across sigma parameter for ’german
scaled’ dataset, rank 50 approximation. Sample size ≈ 49n log n

sigma L1 L2 L2 approx Uniform Clustering U + C U +D U + C +D

0.649 1373 4914 276.8 137.1 102.7 184.6 230.2 502.2
1.299 3.857 5.164 2.762 1.953 1.687 1.626 1.841 2.143
2.598 1.049 0.754 0.771 0.635 0.591 0.566 0.568 0.569
3.247 0.439 0.380 0.394 0.302 0.289 0.288 0.299 0.282
4.871 0.067 0.073 0.079 0.067 0.065 0.063 0.064 0.061
9.742 4.1e-03 4.2e-03 4.3e-03 4.1e-03 4.1e-03 4.1e-03 4.1e-03 4.0e-03
16.24 5.3e-04 5.3e-04 5.7e-04 5.4e-04 5.4e-04 5.3e-03 5.2e-03 5.3e-03

Table 5.4: Comparison of different sampling schemes across sigma parameter for ’german
scale’ dataset, rank 200 approximation. Sample size ≈ 120n log n

5.2.2 Comparison of initialization strategies

Several initialization strategies were discussed in section 3.5. In this section, the empirical
error for different strategies is reported. For comparison, we run 10 independent runs of
ALS and report the mean spectral error. For each independent run 3 iterations of ALS
are performed. Using the observations from the previous section, we choose the sampling
distribution as U + C +D for r ≥ 50 and uniform sampling otherwise.

Table 5.6 shows the performance of different initialization schemes across a range of
sigma parameters for ‘ijcnn1 small’ dataset. K-means Nystrom performs better than any
other initialization scheme across the range of sigma values except for small sigma values.



sigma L1 L2 L2 approx Uniform Clustering U + C U +D U + C +D

0.465 4434 92.05 10.70 2.172 7.592 2.198 2.227 2.852
0.929 204.68 2.237 2.267 1.548 2.388 1.596 1.474 1.552
1.859 2.167 0.632 0.605 0.412 0.391 0.392 0.346 0.358
2.324 0.820 0.280 0.302 0.213 0.209 0.207 0.195 0.189
3.485 0.064 0.062 0.064 0.057 0.053 0.056 0.050 0.048
6.972 3.7e-03 4.0e-03 4.0e-03 4.1e-03 3.5e-03 4.0e-03 3.5e-03 3.7e-03
11.620 5.6e-04 5.4e-04 5.5e-04 5.5e-04 5.08e-04 4.9e-04 4.4e-04 4.9e-04

Table 5.5: Comparison of different sampling schemes across sigma parameter for ’satimage
scale’ dataset, rank 100 approximation. Sample size ≈ 151n log n

Sigma Random Nystrom KNystrom SVD
0.21 193.00 23.71 20.14 6.04
0.42 187.08 5.06 4.96 6.70
0.85 147.98 2.14 2.01 5.04
1.06 124.97 1.23 1.22 5.34
1.59 89.55 0.37 0.36 5.55
3.18 67.70 0.03 0.03 6.88
5.30 65.48 0.004 0.004 4.01

Table 5.6: Performance of different sampling strategies across sigma parameter for ’ijcnn1
Small’

Note that for small sigma, sparse SVD is better or comparable to Nystrom based methods.
One reason for such behaviour is the lack of performance of sampling based methods
for coherent matrices. For Nystrom methods this behaviour has been studied earlier by
Talwalkar et al. [22]. Table 5.7 shows similar results for ‘german scale’ dataset. Table 5.8
shows the comparison of initialization strategies for different datasets. Sigma parameter
in table 5.8 is chosen as the mean of pairwise distance between the data points (equation
5.4).This is a common technique used for Gaussian kernels [41, 42].

σmean =

√
1

2

∑
i,j

||xi − xj ||2 (5.4)

K-means Nystrom performs better on all the data sets. Performance of Nystrom is close
to k-means Nystrom and is better than sparse SVD and random initialization. Sparse SVD,
though better than random is much worse than Nystrom based approximations. Moreover,
empirically the time taken by sparse SVD is much more than the time taken by Nystrom
based methods.



Sigma Random Nystrom KNystrom SVD
0.65 195.70 1027.88 439.70 1390.21
1.30 192.18 3.94 3.71 5.11
2.60 166.28 3.18 3.01 6.56
3.25 139.94 2.20 2.05 6.16
4.87 96.45 0.75 0.72 6.99
9.74 67.98 0.068 0.063 5.93
16.24 64.94 0.010 0.010 4.19

Table 5.7: Performance of different sampling strategies across sigma parameter for ’german
Scale’

Dataset n r |Ω| Random Nystrom KNystrom SVD
ijcnn1 Small 1000 50 49n log n 125.95 1.23 1.21 5.38
german Scale 1000 50 49n log n 141.26 2.16 2.09 6.45
satimage Scale 4435 100 150n log n 348.81 0.21 0.19 2.20

wine 6497 100 160n log n 322.09 1.06 0.20 5.12
cpusmall 8192 100 163n log n 214.79 1.16e-05 2.78e-06 3.54

Table 5.8: Performance of different sampling strategies



5.2.3 Performance of ALS for kernel approximation

In this section we show comparisons of our method with other state of the art techniques
for low rank approximation of kernel matrix. The algorithms that we compare include
standard Nystrom, k-means Nystrom, MEKA, random Fourier features (RFF) and ALS.
In past research, K-means Nystrom has shown better performance than other variations of
Nystrom [30, 17] and therefore we do not consider other variations of Nystrom here. We
use our own implementation of Nystrom, k-means Nystrom and RFF. For MEKA we use
code provided by the original authors at http://www.cs.utexas.edu/~ssi/meka/. In the
experiments done by Si et al. in [30], the rank approximation of each block is fixed to be
constant. We use the same strategy here. Note that, in the code provided by the original
authors, rank approximation of each block is computed adaptively in proportion to the
number of points in the cluster. We also evaluated this strategy, but found the former
to yield better results. The results for the adaptive strategy can be found in appendix
??. Moreover, the original authors fixed the number of iterations of k-means clustering in
MEKA to 10. We perform at most 500 iterations of kmeans to ensure convergence. We
also compare the performance of all the algorithms against SVD’s optimal errors.

5.2.3.1 Spectral error at fixed number of output parameters

Table 5.10 shows the comparison of performance of various algorithms. For each dataset
the spectral error is computed over a randomly sampled subset of 1000 data points. For
each dataset, the number of parameters required to store the sketch are kept the same
across the algorithms. As it is difficult to match the exact same number of parameters for
MEKA and other methods (see table 3.1), we choose MEKA’s parameters such that the
number of parameters is slightly greater than that used by the other algorithms. Bandwidth
parameter is selected by either using equation 5.4 or by tuning the sigma parameter for
kernel ridge regression problem. Results of tuning sigma using kernel ridge regression are
provided in table 5.13.

Now we provide details of the parameters used for different algorithms:

• For standard Nystrom and k-means Nystrom, the number of columns sampled is 4r.

• For ALS, we take O(rn log n) samples. Table 5.9 shows the details of the number
of samples for ALS. Number of iterations of ALS is kept fixed at 3 for all datasets
except for ‘cadata’, for which 4 iterations are run.

• For RFF, exactly r features are sampled for a rank r approximation.

We run 10 independent trials of each algorithm and report the mean and the standard
deviation of the spectral error.

From table 5.10, it is clear that ALS leads to lower error than other state of the art
algorithms. As the number of parameters used to store the sketch are the same for all the

http://www.cs.utexas.edu/~ssi/meka/


Dataset n σRBF r |Ω|
ijcnn1 Small 1000 1.06 50 49n log n

german Scale 1000 3.25 50 49n log n

satimage Scale 4435 2.32 100 102n log n

wine 6497 32 100 160n log n

cpusmall 8192 2× 106 100 163n log n

cadata Scale 20400 4 200 430n log n

ijcnn1Scale 49990 4.70 200 387n log n

Table 5.9: Number of samples taken from different datasets for each run of ALS. Table
5.10 shows the performance for these input parameters

Dataset #param stdNys kNys MEKA RRF ALS SVD
ijcnn Small 50000 2.28± 0.29 1.79± 0.20 2.06± 0.70 81.89± 0.34 1.21± 0.08 0.9178

german Scale 50000 3.36± 0.29 2.92± 0.11 7.00± 2.64 103.39± 33.17 2.09± 0.07 1.67

satimage Scale 443500 0.72± 0.28 0.30± 0.04 1.73± 0.24 57.42± 11.53 0.20± 0.01 0.12

wine 649700 1.12± 0.23 0.26± 0.04 1.16± 0.79 65.40± 22.73 0.17± 0.08 0.004
cpusmall (×10−6) 819200 191.6± 211.1 4.64± 2.05 875.0± 735.5 62.51± 38.69× 106 1.28± 0.56 0.004

cadata 4128000 0.67± 0.30 0.60± 0.15 0.072± 0.02 45.65± 12.67 0.067± 0.04 0.0003

ijcnnScale 9998000 0.79± 0.07 0.57± 0.06 1.03± 0.45 37.90± 6.46 0.38± 0.02 0.1307

Table 5.10: Comparison of different algorithms for low rank approximation of kernel matrix



algorithms, ALS shows the best performance given the sketch size. The good performance
of ALS can in part be attributed to the good initialization solution provided by k-means
Nystrom. In fact, k-means Nystrom is the second best algorithm among the suite of
algorithms that we consider. Recently, MEKA was shown to have better performance
than any other kernel approximation method [30]. We use the parameters as advised by
the original authors and also do some hand tuning but we find the performance of MEKA
unstable as can be seen from the high standard deviation of errors. This behaviour has been
reported elsewhere [32, 31]. Interestingly, the performance of MEKA is considerably better
for larger datasets and for high rank approximation. RRF shows the worst performance
among the methods we compare. This is expected, as the number of features sampled for
rank r approximation are restricted to r. Usually, a very high number of random features
are required to accurately approximate the kernel value.

From table 5.10, one may also observe that ALS is among the most stable methods, with
very low standard deviation. It is more stable than the k-means Nystrom method which
initializes its solutions. This indicates that the ALS optimization process is iteratively able
to reduce the noise in the solution in some sense.

One may argue that the performance of standard Nystrom and k-means Nystrom may
be improved by increasing the number of sampled columns. Table 5.11 shows the com-
parison of the mean spectral error of ALS and Nystrom for the same number of sampled
entries. Though Nystrom performance improves on increasing the number of sampled rows
and columns, ALS is still slightly better. Also, note that the initialization strategy for ALS
utilizes the Nystrom approximation. Hence, the output of the Nystrom approximation,
with a large number of sampled columns can be further used to improve the performance
of ALS. Similarly, MEKA’s performance can be improved by using ALS rather than Nys-
trom for approximating the diagonal blocks.

Dataset |Ω| stdNys kNys ALS
ijcnn Small 49n log n 1.47 1.41 1.18
german Scale 49n log n 2.57 2.25 2.12
satimage Scale 102n log n 0.41 0.22 0.19

Table 5.11: Comparison of ALS and Nystrom with same number of samples

5.2.4 Comparison of error with number of parameters

Figure 5.2 shows the variation of the error with the number of parameters required to store
the solution. The number of parameters are controlled by the parameter r, the desired rank
approximation. As the number of parameters increase the approximation error goes down
for all the algorithms. This is expected as higher number of parameters mean a higher



rank approximation which leads to better approximation. This also shows the decaying
nature of the spectrum of the kernel matrix.

As in the previous sections, the error here is the approximation over a smaller sub-
sampled 1000 × 1000 kernel matrix. The small size of the sub-sampled matrix makes
the computation of SVD feasible. Note that for lower number of parameters MEKA’s
performance surpasses that of SVD for ijcnn1 dataset. SVD’s results are optimal given a
fixed rank approximation. As MEKA does a block-wise rank approximation, it is able to
perform a higher rank approximation than SVD for the same number of output parameters.
This is a major plus for MEKA. However, in our experiments, the performance of MEKA
becomes worse than that of SVD and ALS on increasing the number of parameters.

The performance of ALS is worse only compared to SVD, which is provably optimal.
Interestingly, the nature of variation of error with number of parameters is very similar
for ALS and SVD. This indicates that ALS is able to learn the decaying spectrum of the
kernel matrix.

5.2.5 Run time comparison

Table 5.12 shows the average time taken (in sec) to get the approximation errors in table
5.10. We use a MATLAB based implementation of all the algorithms. All the experiments
are run on intel core i7-4770 3.4Ghz × 4 CPU with 31.1 GB memory. For each algorithm
total time taken is computed as the time taken for the algorithm to return an approximation
of the form K ≈ UUT .

Clearly, ALS is the slowest among the compared algorithms and RRF is the fastest.
Though the time complexity of ALS is almost linear in n, run time is a bottleneck for
moderately high n. The slowness of ALS can be attributed to overheads in sampling and
running the iterative least square solver.

Dataset stdNys kNys MEKA RRF ALS
ijcnn Small 0.01 0.18 0.06 0.002 3.99
german Scale 0.01 0.23 0.04 0.002 3.47
satimage Scale 0.07 5.40 0.40 0.007 37.89

wine 0.08 2.70 0.23 0.009 81.07
cpusmall 0.08 5.68 0.39 0.010 42.84
cadata 0.38 17.07 1.74 0.05 3747

Table 5.12: Comparison of approximation time (in sec) using ALS algorithm for low rank
approximation of kernel matrix
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Figure 5.2: Number of parameters (Memory) vs Error for different datasets. Algorithms
that have error greater than the maximum value on the given y-axis are not shown
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Figure 5.2: Number of parameters (Memory) vs Error for different datasets. Algorithms
that have error greater than the maximum value on the given y-axis are not shown

5.3 Kernel Ridge Regression using Approximated Kernel

Kernel ridge regression (KRR) [3] performs linear regression in the mapped feature space.
Let L = {(x1, y1), . . . , (xL, yL)} be the learning set. Let φ : X → H be the feature map
from the input space to the feature space. In the mapped feature space the objective
function to be minimized is:

min
w

λ||w||2 +
L∑
i=1

(wTφ(xi)− yi)2 (5.5)

where L is the size of learning set. The solution of above problem is given by

w =
1

2λ

L∑
i=1

αixi

where α = 2λ (K + λI)−1 y (5.6)

where y = [y1, . . . , yL]T , α = [α1, . . . , αL]T and K is the L×L kernel matrix corresponding
to the learning set. For testing:

ypredicted =
1

2λ

L∑
i=1

αiK (xi, xtest) (5.7)

The training step of KRR can be accelerated using a kernel approximation. The training
step entails finding an inverse of the n × n matrix. Using an approximation of the form
K ≈ UUT , this inversion can be computed by using the famous Woodbury formula [43, 11].

λ(K + λI)−1 = I − U(λI + UTU)−1UT (5.8)



Thanks to equation 5.8, the above inverse can be computed in O(nr2) time.
Root mean square error (RMSE) for cross validation is computed by evaluating mean

square error for each fold and then taking the square root of its mean across the folds i.e.
RMSE over the k-folds is

RMSECV =

√√√√∑k
j=1

∑Vj
i=1(yi−ŷi)2

Vj

k

where Vj is the number of elements in the held out part of the jth fold.
For the purpose of experiments all the datasets are split into 80-20 train-test ratio

uniformly randomly. Tuning is performed on the training set. Parameters to be tuned
include the bandwidth parameter of the kernel matrix and the regularizer of the regression
problem. Tuning is done by performing a grid search over the parameter space to minimize
the 4-fold cross validation error. The reported errors are 10-fold cross validation errors at
the tuned value. Exact kernel computation is done for tuning. Table 5.13 shows the tuned
parameters. σmean denotes the bandwidth parameter computed using the mean of pairwise
distances between the data points. σtune denotes the bandwidth parameter after tuning.
For the experiments we consider some datasets which are scaled to zero mean and unit
variance and some unscaled datasets. For details about the datasets, see appendix B

Dataset #obs σmean σtune λ RMSECV 10

abaloneScale 4177 2.83 2 0.0625 0.6541
Wine 6,497 59 32 .0039 0.7109

wineScale 6,497 3.32 1 0.5 0.7535
cpusmall 8,192 5× 105 2× 106 1.5× 10−5 5.3923

cpusmallScale 8,192 3.47 8 2−10 0.1686
cadataScale 20,640 2.83 2 0.0078 0.4664

Table 5.13: Table showing tuned parameters for different datasets

Figure 5.3 shows the comparison of different datasets for kernel regression problem.
Each point is an average of 10 random runs of all the algorithms. ‘Exact’ refers to using
the original kernel matrix without any kind of approximation. From the plots, it can be
inferred:

• As the number of parameters increase, RMSE goes down. As higher number of
parameters mean better approximation to the true kernel, it shows that better ap-
proximation leads to better training.

• At the same time we observe that for a given number of parameters, all the algorithms
perform similar to each other. This suggests that small differences in kernel may not
be important for regression. This becomes more clear in the test plots.



• In the test plots, for some datasets using an approximation may even be better than
using the exact kernel. This may be attributed to low stable rank of these matrices
as well. In figure 5.1b, we saw that the stable rank at which we are operating is very
low. For a very low rank matrix, low number of parameters should be enough for
approximation. In the test plots, the y-axis has a very small range, indicating that
the difference between algorithms may not be statistically significant.

Note that, most of the plots in figure 5.3 do not show errors for MEKA. The reason
is that MEKA has shown poor performance in our experiments and the mean errors go
way higher than the shown y-axis. Though individual runs of MEKA may be competi-
tive, we observe that the method is unstable and some runs may yield an ill-conditioned
approximate leading to blowing up of α in equation 5.7. In the next section we present
a comparison of condition number of approximates returned by different approximation
schemes.

5.3.1 Condition number of approximate

For a rank r approximation, we measure the condition number of approximates as K = σ1
σr
.

Figure 5.4 shows the comparison of condition number for different rank approximations.
All the entries are mean over 10 independent runs of each algorithm. Note that, for MEKA
the rank approximation r is the cumulative of rank approximation of each diagonal block.
Although we use the simple scheme where rank of each block is a fixed number, certain
pathological cases may occur where the size of the cluster is less than the assigned rank
approximation of that block. Thus, rank of each block depends on the clustering procedure,
which begins with random initialization in each run. In figure 5.4, rank for MEKA is taken
as the average over independent runs.

From figure 5.4, it is clear that the condition number of approximates rises with increase
in the number of parameters. This is expected since the condition number rises with the
decaying spectrum. Further, the condition number of ALS is consistently smaller than
that of Nystrom and k-menas Nystrom. Also, the condition number for ALS is close to
SVD’s condition number, showing that spectrum of ALS approximate is similar to that of
SVD. Interestingly, MEKA shows a very erratic behaviour in terms of condition number.
Again, we observe the high variance behaviour for MEKA. Some of the independent runs
yield a very high condition number, leading to high mean condition number. To illustrate
the difference we show the condition number of MEKA with rank in figure 5.5 and the
corresponding regression error in figure 5.6. We believe that the erratic behaviour of MEKA
could be attributed to instability in k-means clustering which give different clusters in each
random run.
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Figure 5.3: Number of parameters (Memory) vs Error for different datasets. Algorithms
that have error greater than the maximum value on the given y-axis are not shown
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Figure 5.3: Number of parameters (Memory) vs Error for different datasets. Algorithms
that have error greater than the maximum value on the given y-axis are not shown
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Figure 5.4: Condition number vs Rank for different datasets. Algorithms that have condi-
tion number greater than the maximum value on the given y-axis are not shown
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Figure 5.6: Train and Test Regression Error vs Number of parameters for different algo-
rithms. The figure shows the difference between MEKA and other algorithms



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Kernel approximation is a popular and effective way of scaling up kernel machines. There
has been a long line of work that has been done in this direction. Much work has also been
done in the direction of general matrix low rank approximation. While these methods
can be applied directly to kernel matrices, they do not generally respect the symmetry
and positive semi-definite nature of the kernel matrix [19]. Leverage element low rank
approximation (LELA) is a recent development for approximating general matrices. In this
work we have extended the LELA algorithm to handle SPSD kernel matrices. The major
bottlenecks in LELA, while dealing with dense SPSD matrices, included efficient sampling,
good initialization and symmetric factorization. We make the following contributions in
this regard:

• We propose an efficient sampling scheme and show empirical evidence of its superi-
ority over other sampling schemes (section 3.4).

• We leverage the properties of SPSD matrices and propose an initialization scheme
based on a variant of the Nystrom approximation method. We empirically show the
advantages of using this initialization scheme over sparse SVD (section 3.5).

• We propose and implement a simple trick to construct a symmetric factorization
of the kernel matrix. We show that previous theoretical results in the literature
for non-symmetric factorization can be easily extended for the proposed symmetric
factorization step as well (section 4.3).

• We provide theoretical analysis of a simplified version of our method and show its
convergence (chapter 4).

• Our kernel approximation scheme based on ALS shows good empirical performance
on several datasets when compared with other state-of-the-art algorithms in kernel
approximation (section 3.6).

• We show a comparison of different low rank approximation schemes on kernel ridge
regression problem (section 5.3).



6.2 Future work

The major drawback of our algorithm is its run time when compared to other state-of-the-
art methods (Table 5.12). Our method runs faster than SVD but is substantially slower
than other approximation schemes while providing a slightly better sketch. The major time
consuming step in our algorithms is solving the least square problem iteratively. In the
future we would like to explore different optimization algorithms which could give similar
performance but run faster.

The current sampling is based on a mixture of uniform sampling and k-means clustering.
Our theoretical analysis is based on the assumption of a simpler uniform sampling. In
future we would like to explore more complicated but computationally efficient sampling
schemes based on the properties of kernel matrix.

Lastly, our analysis of initialization using Nystrom approximation is based on the as-
sumption of a large gap in the spectrum of the input matrix and is pretty loose. Indeed,
we find that the bounds given in the literature on theoretical analysis of the Nystrom ap-
proximation are very loose when compared to its empirical performance. We intend to do
a tighter analysis of the Nystrom method and in turn improve the bounds of our algorithm
for kernel approximation.



Appendix A

Appendix A

Proof of lemma 1 is a simple extension of Theorem 3 in [24]. Before stating the proof we
review some of the inequalities used in the proof.

Lemma 5. (Matrix Bernstein inequality [25]) Let X1, . . . , Xp be independent random ma-
trices in Rn×n. Assume each matrix has bounded deviation from its mean:

||Xi − E[Xi]|| ≤ L, ∀i ∈ [p] with probability 1 (A.1)

Also, let variance be

σ2 = max

{∣∣∣∣∣
∣∣∣∣∣E
[

p∑
i=1

(Xi − E [Xi]) (Xi − E [Xi])
T

]∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣E
[

p∑
i=1

(Xi − E [Xi])
T (Xi − E [Xi])

]∣∣∣∣∣
∣∣∣∣∣
}

Then,

P

[∣∣∣∣∣
∣∣∣∣∣
p∑
i=1

(Xi − E [Xi])

∣∣∣∣∣
∣∣∣∣∣ ≥ t

]
≤ 2n exp

(
−t2/2

σ2 + Lt/3

)
(A.2)

A partial ordering can be defined on symmetric matrices. A � B signifies that matrix
B −A is PSD. Also, if A � B then it follows that ||A|| ≤ ||B||.

Now, we state the proof of lemma 1

Proof. (Proof of lemma 1) Consider D random fourier features[23]

zi(X) =
[√

2 cos(ωix1 + bi), . . . ,
√

2 cos(ωixn + bi)
]T
, i = 1, . . . D

Let Xi = 1
D

(
ziz

T
i −K

)
be a random matrix. As E

[
ziz

T
i

]
= K, E [Xi] = 0.

||Xi|| =
1

D
||zizTi −K||

≤ 1

D

(
||zizTi ||+ ||K||

)
(A.3)

ziz
T
i is a rank 1 matrix so, zizTi = zi

||zi|| ||zi||
2 zTi
||zTi ||

and ||zizTi || = ||zi||2 ≤ 2n. Also,
||K|| ≤ tr(K) = n. Using in equation A.3:

||Xi|| ≤
3n

D
(A.4)



Variance σ2 = max{
∣∣∣∣∣∣E [∑D

i=1XiX
T
i

]∣∣∣∣∣∣ , ∣∣∣∣∣∣E [∑D
i=1X

T
i Xi

]∣∣∣∣∣∣} As, Xi is symmetric
here, this reduces to,

σ2 =

∣∣∣∣∣
∣∣∣∣∣E
[
D∑
i=1

X2
i

]∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
D∑
i=1

E
[
X2
i

]∣∣∣∣∣
∣∣∣∣∣

≤
D∑
i=1

∣∣∣∣E [X2
i

]∣∣∣∣ (A.5)

by linearity of expectation and triangle inequality. Further,

E
[
X2
i

]
=

1

D2
E
[
||zi||2zizTi −KzizTi − zizTi K +K2

]
4

1

D2
E
[
2nziz

T
i

]
−KE

[
ziz

T
i

]
− E

[
ziz

T
i

]
K +K2

=
1

D2

(
2nK −K2

)
=

1

D2
K (2nI −K) 4

2nK

D2
(A.6)

∣∣∣∣E [X2
i

]∣∣∣∣ ≤ 2n||K||
D2 = 2n2

D2 . Using this in equation A.5,

σ2 ≤ 2n2

D

Using above and equation A.4 in matrix bernstein inequality, we get the stated result.



Appendix B

Details of Datasets

B.1 Summary of Datasets used

Dataset #obs #features σmean

abaloneScale 4,177 8 2.83
cadataScale 20,640 8 2.52× 103

cpusmall 8,192 12 5× 105

cpusmallScale 8,192 12 3.46
wine 6,497 11 59

wineScale 6,497 11 3.32
ijcnn1Small 1,000 22 1.06
germanScale 1,000 24 3.25
satimageScale 4,435 36 2.32

Table B.1: Summary of datasets used

B.2 Details of Datasets used

The scaled version of most of the datasets with test and train data points is available from
project’s website.

1. abaloneScale: Original source of abalone dataset is UCI. We download it from
LIBSVM website. Original dataset is scaled to 0 mean and unit variance to create
abaloneScale.

2. cpusmall: Original data available from Delve. We download it from LIBSVM web-
site. cpusmallScale is the Scaled version of this dataset to 0 mean and unit variance.

3. cadataScale: Original source of cadata is statLib. We download it from LIBSVM
website and scale it to 0 mean and unit variance.

4. wine: Original source is wine quality dataset from UCI. wineScale is the scaled
version of this dataset with 0 mean and unit variance.

http://home.iitk.ac.in/~piyushb/
https://archive.ics.uci.edu/ml/datasets/Abalone
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://lib.stat.cmu.edu/datasets/houses.zip
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://archive.ics.uci.edu/ml/datasets/Wine+Quality


5. ijcnn1Small - ijcnn1 is the modified version of the data provided in a competition
conducted as a part of International Joint Conference on Neural Networks 2001
(ijcnn1). The original data is time series data of ≈ 50, 000 observations of a 10

cylinder internal combustion engine. We take the pre processed data from LIBSVM
website and uniformly randomly select 1, 000 observations.

6. germanScale: We take the scaled version of the german dataset from LIBSVM
website. The data is scaled in [−1, 1].

7. satimageScale: We take the scaled version of the satimage dataset from LIBSVM
website.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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