
Understanding Word2Vec and Paragraph2Vec

August 13, 2016

Abstract

1 Introduction

In these notes we compute the update steps for Para2Vec algorithm [?]. These
notes focus on the Distributed Memory (dm) model with mean taken at hidden
layer (DM-mean). The original paper describes several other adaptations. As
Para2Vec is an adaptation of the original word2vec algorithm, the update steps
are an easy extension.

2 Word2Vec Architecture

We concentrate on the word2vec continuous bag of words model, with negative
sampling and mean taken at hidden layer. This is a single hiddden layer neural
network.

2.1 Notation

Let WI = {w0
I , w

1
I , . . . w

ni

I } and WO = {w0
O, w

1
O, . . . w

no

O } denote the set of
input and output layer nodes respectively. Let h denote the vector at the hidden
layer. ni = |WI |, r, no = |WO| represent the size of input, hidden and output

Figure 1:

1

layer respectively. Let pi ∈ Rr and qj ∈ Rr be the vector representation of the
ith input and jth output node respectively. Let P represent a matrix of input
layer weights with ith row vector as pTi and similarly matrix Q is also defined.

2.2 Training

The training set consists of set of context entities (words in word2vec, documents
and words in doc2vec) used to predict a target entity at output layer. Let C
and T represent the set of context and target entities respectively, then C ⊂WI

and T ⊂WO.
For a given training sample, let C = {wc1

I , . . . w
c|C|
I } represent the sequence

of context entities and W j∗

O be the target entity. Word2Vec training maximizes
the conditional probability of target given context. This probability is modeled
using softmax function as:

P (W j∗

O |C) =
exp(qj∗

Th)∑no

j exp(qjTh)
(1)

where h is constructed in a feed-forward manner as

h =
1

|C|
∑
i∈C

pi (2)

To compute the update, we take a step in direction of gradient of log of

P (W j∗

O |C). Letf(q0, . . . , qni
, h) = log(P (W j∗

O |C)).

∂f

∂qi
= (I(i = j∗)− exp(qi

Th)∑nO

j exp(qjTh)
)h (3)

= (I(i = j∗)− P (wi
O|C))h (4)

= eih (5)

where ei = (I(i = j∗)−P (qi|C)) denotes the error incurred at ith output node.
At (t+ 1)th step:

qt+1
i ← qti + ηeih (6)

Further, note that

∂f(q0, . . . , qno
, h)

∂pi
=

no∑
j

∂f

∂qj

∂qj
∂pi

+
∂f

∂h

∂h

∂pi
(7)

Note,
∂qj
∂pi

= 0 as Q and P are independent. Thus,

∂f

∂pi
=
∂f

∂h

∂h

∂pi
(8)

=
1

|C|
∂f

∂h
for wi

I ∈ C (9)

= 0 otherwise (10)

2

where,

∂f

∂h
=

no∑
j

(I(j = j∗)− P (wj
O|C))qj (11)

=

no∑
j

ejqj (12)

Thus, update step for pi where wi
I ∈ C is:

pt+1
i ← pti +

η

|C|

no∑
j

ejqj (13)

For wi
I 6∈ C:

pt+1
i ← pti (14)

2.3 Time Complexity of updates for every training sample

P (wi
O|C) computation at each output node requires O(no) operations. The up-

date equation 6 and 13 requires O(nor) computations. As, no can be in millions,
this is prohibitive as we may have millions of words in the vocabulary.Negative
sampling has been proposed as a potential solution to these scalability chal-
lenges.

3 Negative Sampling

The bottleneck step in previous computations is the softmax normalization.
We can replace softmax by some other model, a commonly used one being logit
function, defined as:

σ(x) =
1

1 + e−x
(15)

Logit has range in (0, 1). It has some interesting properties:

dσ(x)

dx
= σ(x)σ(−x) (16)

d log σ(x)

dx
= σ(−x) (17)

1− σ(x) = σ(−x) (18)

In softmax based approach we maximized the probability of target word con-
ditioned on Context words. Note that as softmax is normalized, this also in-
corporates minimizing probability of non-target words. For negative sampling
instead of considering all non-target words (also known as negative words), few
examples are randomly sampled to constitute a negative sample set N . The
objective function for negative sampling becomes:

maxP (W j∗

O |C)
(

Πj∈N (1− P (W j
O|C))

)
(19)

3

where, P (W j
O|C) = 1

1+e
−qT

j
h

. Although We model the conditional probability

as logit, it is not a well defined probability distribution as it isn’t normalized
i.e.

no∑
j

P (W j
O|C) 6= 1

. Goldberg-levy explain a way to see the above objective function in terms of a
well defined distribution.

Note that we could have also maximized a slightly different objective func-
tion:

P (W j∗

O |C)
Πj∈NP (W j

O|C)
We will later come back to this.

Derivation of update steps is similar to the softmax case:

f(q0, . . . , qni , h) = log
(
P (W j∗

O |C)
(

Πj∈N (1− P (W j
O|C))

))
(20)

= log σ(qTj∗h) +
∑
j∈N

log σ(−qTj h) (21)

∂f

∂qi
= (I(i = j∗)− σ(qTj h))h

= (I(i = j∗)− P (wi
O|C))h

= eih ∀i ∈ N ∪ {j∗}
= 0 otherwise

where ei = (I(i = j∗)−P (wi
O|C)) denotes the error incurred at ith output node.

Update for output node vector thus is:

qt+1
i ← qti + ηeih i ∈ N ∪ {j∗} (22)

qt+1
i ← qti otherwise (23)

For pi:

∂f

∂pi
=
∂f

∂h

∂h

∂pi

=
1

|C|
∂f

∂h
for wi

I ∈ C

= 0 otherwise

where,

∂f

∂h
=

N∑
j

(
I(j = j∗)− σ(qTj h)

)
qj (24)

=

N∑
j

ejqj (25)

4

Figure 2: Paragraph2Vector

Update for pi where wi
I ∈ C is

pt+1
i ← pti +

η

|C|

N∑
j

ejqj (26)

3.1 Time Complexity of Negative Sampling

Computing updates in equation 22 takes O(|N |r) time. Computing updates of
equation 29 takes O ((|N | + |C|) r) time. As the number of negative samples
and context words are small constants, this method is practically O(r).

4 Pargraph2Vec

Paragraph2Vec technique includes several different algorithm. We discuss DM
with average at hidden layer. The only difference from word2vec is inclusion of
documents along with words as input nodes. P2V neural net has input nodes
representing documents in the training data (see fig 2).

The rationale behind including documents as input nodes is based upon
considering documents as another context. In this abstract sense of context
there is no difference between a word and a document. At the time of training we
consider (context set, target) pairs as in word2vec, however, for P2V document
is also considered a member of the context set. The objective function and the
training update steps are exactly the same as word2vec.

5

Figure 3: Paragraph2Vector Inference

4.1 Inference

How do we handle new documents in this model? How would one handle new
words in word2vec? One solution is to add a new node for this word, find
new training data where the new word is present and run some more iterations
of W2V training. That is exactly how new documents are handled in P2V.
We retrain the model with the words present in the new document (this is
the inference step in P2V). Note that the training update equation 29 doesn’t
impact members not in the context set, C. Thus, at inference time model can
be seen as in figure 3. Also, note that the weights P and Q have already been
learnt in the training step and one may choose to treat them as constants at
the inference step.

The objective function is same as in equation 19, repeated here for clarity:

f(q0, . . . , qni
, h) = log σ(qTj∗h) +

∑
j∈N

log σ(−qTj h) (27)

Update steps treating P and Q constant

P and Q have no updates. Let dtest represent the vector representing the new
test document.

∂f

∂dtest
=

1

|C|
∂f

∂h
(28)

∂f
∂h remains same as in equation 24. Update step for this document vector

is:

dt+1
test ← dttest +

η

|C|

N∑
j

ejqj (29)

Run time for inference is O(|N |r).

6

If P and Q are also updated, then the inference step become similar to
training and takes O((|N |+ |C|)r) time.

7

