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Abstract—We consider the problem of joint admission control
and power allocation in a multiband cognitive radio network
(CRN) coexisting with multiple narrowband primary systems,
and investigate two separate optimization problems: i) sum-rate
maximization under primary user (PU) and secondary user (SU)
quality of service (QoS) constraints; ii) sum-rate maximization
and power minimization under PU and SU QoS constraints. We
first show that these problems are NP-hard. Then we propose
three different suboptimal algorithms for the first problem
based on convex relaxation with tree pruning (CRTP), convex
relaxation with gradual removal (CRGR) and genetic algorithms
(GA). These algorithms offer different tradeoffs in terms of
goodness of their solutions and computational complexity.For
the second problem, we propose a multiobjective evolutionary
algorithm which can generate a Pareto front in a time-efficient
manner. Simulation results are provided to evaluate the proposed
algorithms.

Index Terms—Cognitive radio networks, resource allocation,
optimization algorithms.

I. I NTRODUCTION

With the rapidly growing demand for wireless access,
cognitive radio networking has become an active area of
research. The concept ofcognitive radio network (CRN) was
proposed as a solution to maximize the efficiency of spectrum
usage, where secondary (unlicensed or low-priority) userscan
access the licensed spectrum as long as they do not cause
any “harmful” interference to the primary (licensed or high-
priority) network. Two popular approaches for implementing
cognitive radio networking are spectrum overlay and spectrum
underlay [1]. In the spectrum overlay approach, secondary
users (SUs) detectspectrum holes (frequency bands not used
by primary users) by sensing the whole spectrum, and then
transmit over them. In spectrum underlay approach, SUs
coexist with the primary users (PUs) over a shared spectrum
band as long as they don’t violate any PU quality-of-service
(QoS) constraints.

In this paper, we focus on multiband CRNs utilizing
spectrum underlay approach and investigate two optimization
problems: i) Sum-rate maximization of the network under
PU and SU QoS constraints; ii) Sum-rate maximization and
power minimization of the network under PU and SU QoS
constraints. We consider a scenario where there are a number
of ongoing PU transmissions. The secondary network has
a number of transmission requests which have some given
QoS constraints. Secondary transmissions are not allowed to
violate any existing PU QoS constraints. The problem is to
select which secondary links to activate (admission control)
and to find how to allocate power over the shared frequency
band for those activated secondary links in the context of
given optimization problems. Sum-rate maximization has been

widely considered in the literature [2], [3], [4], [5] as a
system optimization criterion, especially in the context of
traditional wireless networks. In our first problem, given the
QoS requirements of the PUs, each SU admission strategy
yields a different solution region in terms of power vari-
ables and solution regions are disjoint. For an SU admission
strategy, if there exists a power allocation strategy meeting
QoS requirements of all the PUs and the admitted SUs
simultaneously, then that solution region is deemed as feasible.
To the best of our knowledge, this kind of multiband scenario
with multiple joint requirements has not been considered in
the cognitive radio literature. Similar to the sum-rate maxi-
mization problem, network power minimization has also been
widely investigated. However, to the best of our knowledge,
these two problems have not been investigated together in a
multiobjective framework. This work serves as our attempt to
introduce a network wide multiobjective optimization problem
for sum-rate maximization and power minimization in CRNs,
and propose multiobjective optimization algorithms to obtain
the set of Pareto optimal solutions.

We show that the sum-rate maximization problem with QoS
constraints is NP-hard, which implies that our second problem
is also NP-hard. This result motivates the development of
computationally efficient suboptimal algorithms. We propose
three different algorithms to maximize sum-rate. The first
algorithm iteratively attempts to find the feasible regionsusing
a tree pruning approach. Then, in each feasible region, the
solution is obtained by first approximating the original ob-
jective function (using a high signal-to-interference-plus-noise
ratio (SINR) approximation) and then using a transformation
that transforms the original nonconvex problem into a convex
one. The second algorithm iteratively eliminates the infeasible
links using a heuristic methodology where the algorithm first
ignores the constraints in the original problem and uses a
convex transformation as in the first algorithm, and then
deletes the infeasible links using the constraints in the original
problem. The third algorithm is based on a genetic algorithm
(GA) which is a stochastic optimization algorithm widely used
for NP-hard problems.

The second problem formulation is a multiobjective problem
for which one needs to find a set of Pareto optimal solutions
(trade-off solutions between two objectives) rather than a
single solution. After finding the set of optimal solutions,it
is up to the central controller to select one of these solutions.
Multiobjective optimization problems can be solved by evo-
lutionary algorithms such as non-dominated sorting genetic
algorithm-II (NSGA-II) [6]. The original NSGA-II is unableto
provide good solutions for our problem. Therefore, we modify



the original NSGA-II algorithm to improve its performance.
Simulation results are provided to show the performance of
our modified algorithm.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and general problem statement.
Sum-rate maximization problem is formulated in Section III,
where we also present our proposed algorithms. In Section
IV, we introduce our multiobjective optimization problem,
i.e., sum-rate maximization and power minimization problem,
and present the modified NSGA-II algorithm. We provide
numerical results in Section V. Finally, concluding remarks
and directions for future work are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a spectrum underlay CRN, where the available
frequency band can be shared between SUs and PUs in the
network as long as SU transmitters do not create harmful
interference at PU receivers. We assume that the shared
spectrum is divided intoK discrete frequency subbands and,
without loss of generality, each subband has an identical
bandwidth ofB Hz. This set of assumptions is applicable
to systems using orthogonal-frequency-division-multiplexing
(OFDM) technology which has been widely advocated to be a
promising candidate technology for cognitive radio networks
[7]. Our formulations are based on the physical model [8],
which provides a realistic modeling of the physical commu-
nication environment by utilizing the path-loss model. The
path loss between a transmitter-receiver pairn is given as
Ln = C/f2dαi , whereC is a constant,f is the subband carrier,
(dn > 0) is the distance between transmittern and receiver
n, andα is the attenuation constant. We assume that the path-
loss in the received power is the dominant loss factor, and
therefore, we neglect the effects of shadowing and multi-path
fading.

For notational convenience, we number each secondary and
primary transmitter-receiver pair by the indicesn ∈ N =
{1, . . . , N} and m ∈ M = {1, . . . ,M}, respectively, and
refer to them as users. Throughout the paper, the terms
subband and carrier are used interchangeably. We assume
Gaussian channel with zero mean and varianceN0, and that
the received interference is treated as white noise. Under
these assumptions, the achievable data rate of usern can be
expressed [9] as:

Rn = B

K
∑

k=1

log[1 + γn(k)],

where log is defined in base2 and γn(k) is the signal-to-
interference-plus-noise ratio (SINR) of usern on carrierk,

γn(k) ,
pn(k)Ln(k)

N0 +
∑

l∈N∪M,l 6=n pl(k)Ll(k)
. (1)

The SINR condition for establishing a successful communica-
tion link n on carrierk is given byγn(k) ≥ γ∗

n
1.

Without loss of generality, we assume a narrowband primary
network, where a single channel with predetermined transmit
power values is allocated to each primary user. This scenario is
applicable to networks where legacy radios have the licenses to
operate on narrowband channels. Generalization to a wideband
primary network is straightforward and does not affect the

1γ∗ is the minimum required SINR in order to maintain a certain quality-
of-service (QoS), e.g., bit error rate (BER).

methodology. Secondary users utilize multiband techniques to
access the spectrum and each secondary user has a power
budget denoted byPB.

The problem is to maximize the spectral efficiency of the
secondary network while satisfying three sets of constraints: 1)
SINR constraints at the primary receivers, 2) SINR constraints
at the secondary receivers, 3) power budget constraints at the
secondary transmitters. Next, we provide the details of our
problem formulations and proposed algorithms.

III. M AXIMIZATION OF SUM-RATE UNDER QOS
CONSTRAINTS

Without loss of generality, we consider the worst case sce-
nario, where the available frequency band is entirely occupied
by primary users. We assume that each primary user occupies
a single subband and they operate on disjoint subbands. This
results in the equalityM = K. These assumptions are made for
notational convenience and they do not impact our formula-
tions. Given primary network activity and location of users, the
optimization problem is to maximize sum-rate (or achievable
capacity) of the secondary network. The optimization variables
are power levels allocated to each secondary user over each
shared frequency subband.

Define pn , [pn(1), . . . , pn(K)]T as the power allocation
vector where each element represents the power level allocated
to usern over each subband. Usern is said to be inactive over
frequency bandk if pn(k) = 0. A user is said to be active
if it is transmitting on at least one subband. LetFn denote
the set of frequency channels with nonzero power allocations
for sessionn, which implies |Fn| ≤ K. The notation| · |
represents the cardinality of a set. In this case, our setting
requires that|Fm| = 1 for all m ∈ P , andFi ∩ Fj = ∅ if
i 6= j andi, j ∈ P . An SU is allowed to transmit on a carrier,
if and only if it does not violate any SINR or power budget
constraints.

We can now formulate the sum-rate maximization problem,
referred to as P1, as follows:

Find pn, ∀n ∈ SU

Maximize
N
∑

n=1

Rn(pn) (2)

Subject to γm(k) ≥ γ
∗
m, ∀m ∈ M, ∀k ∈ Fm, (3)

γn(k) ≥ I(pn(k))γ
∗
n, ∀n ∈ N , ∀k, (4)

pn(k) ≥ 0, ∀n ∈ N , ∀k, (5)
K
∑

k=1

pn(k) ≤ P
B
, ∀n ∈ N . (6)

In P1, I(·) is the indicator function for the set of positive
real numbers. Inequality (3) represents a set ofK(= M)
SINR constraints for the primary users. The inequality (4)
represents a set ofN × K SINR constraints for each ofN
SUs over each ofK frequency subbands. The SUn will
transmit at a frequencyk, if and only if the SINR of that
link is greater than or equal to the threshold SINR. If the link
is not active over that subband, i.e., ifpn(k) = 0, the SINR
constraint is automatically satisfied. It should be noted that
P1 is in fact asoft-spectrum allocation andpower allocation
problem. The difference between conventional spectrum and
power allocation formulations that have been considered in
the literature, e.g. [10], [11], and our problem P1 is that



conventional formulations treat spectrum allocation as a hard
allocation problem such that no two users share the same
spectrum. In conventional settings, spectrum allocation is
carried out first based on channel conditions followed by
power allocation [10], [11]. However, in our formulation, the
constraint in (4) provides a way to allocate the spectrum in
such a way that multiple SUs can share the spectrum as long
as their QoS constraints are not violated.

Proposition 1: The sum-rate maximization problem with
QoS constraints P1 is NP-hard.

Proof: We prove this by restriction [12]. It was shown in
[4] that the sum-rate maximization problem without the QoS
constraints is NP-hard. The sum-rate maximization problem
P1, which has the primary and secondary QoS constraints, in-
cludes the problem without the QoS constraints as a restricted
special case. Specifically, P1 degenerates to the problem in[4]
by settingγ∗

n = γ∗

m = 0 in (3) and (4). Therefore, P1 is also
NP-hard.

The NP-hardness of the above problem motivates the de-
velopment of efficient suboptimal algorithms. In order to un-
derstand the problem better, let us consider a simple example
of two SUs, one PU and one frequency subband. For a given
set of locations, we draw the SU SINR constraints given in
(4) in Figure 1(a). For now, we ignore the SINR constraints
for PUs. The area inside the square formed by the bounds
on the SU power budget is the region where power budget
constraints are satisfied. There are four possibilities: both SUs
transmit, only the first SU transmits, only the second SU
transmits, or both SUs are off. When both SUs transmit, SINR
constraints for both SUs must be satisfied simultaneously
which is represented by the gray region in Figure 1(a). When
only SUa transmits, only the SINR constraint forSUa needs
to be satisfied. In that case, the constraint in (4) forSUb is
automatically satisfied becausepb = 0. Here, the dark line
on the horizontal axis is feasible. Similar case holds when
only SUb transmits. When both are off, the constraints in (4)
are automatically satisfied and this region is a single point
(0, 0). Now, with a different set of locations, it is possible
that the receivers of both SUs are close to each other. Then
the constraint region may look as shown in Figure 1(b). Here,
there is no region where both SU SINR constraints for SUs
and power budget constraints are satisfied simultaneously.In
other words, it is not feasible for bothSUa and SUb to
transmit together. Another scenario could arise when some
secondary transmitters and receivers are so far apart, or the
receiver is so close to the PU transmitter such that there is
no region when that user can be active, i.e, there is no region
when the power budget as well as the SINR constraint for
that SU is satisfied simultaneously. This scenario is shown in
Figure 1(c). Note that, if this is the case, i.e., an SU cannot
transmit even when other SU’s are OFF, then the possibility
of that SU transmitting when others are ON is automatically
eliminated. We now consider the PU constraints defined in
(3). For a given constant PU transmit power, the constraintsin
(3) define halfspaces. Therefore, in the above three scenarios,
the addition of linear PU constraints will only reduce the
volume of the feasible regions shown in Figures 1(a)-1(c)
for a 2 dimensional case. Resulting feasible regions will be
the intersection of the previous regions and the additional
halfspaces.

We propose three different algorithms to solve the above
problem based on the following methods: 1) convex relaxation

with tree pruning; 2) convex relaxation with gradual removal;
3) genetic algorithms. The comparison of these three algo-
rithms in terms of finding good solutions and time complexity
will be investigated later. The following subsections provide
detailed description of the algorithms.

A. CRTP: Convex Relaxation with Tree Pruning
We start by noting that different combinations of ON and

OFF power variables define different disjoint regions in space.
Each of these regions differ from each other by order of dimen-
sions. There are a total of2N×K ON/OFF combinations and
hence that many regions. However, the number of these regions
which are feasible depends on the locations of secondary and
primary users in the network.

For each feasible region, there areM linear PU SINR
constraints,N linear power budget constraints and some linear
SU SINR constraints whose number depends upon the number
of non zero elements of the power vectorpn. Furthermore,
we note that the objective function is nonconvex. In order to
alleviate the nonconvexity issue, we first use the following
approximationlog(1 + x) ≈ log(x) which is tight for values
of SINR ≥ 5. The same approximation has been made
in [2], [5] for different problems. In a recent work [13],
the authors have shown thatpk = ceµsk , c, µ > 0 is the
unique transformation that transforms the objective function
defined byg(p) =

∑N

n=1
log

(

pn

Nn+
∑

i6=n
ainpi

)

into a convex

function. Note that ing(�), we setK = 1 for notational
convenience andain := Li/Ln. The same transformation
has been used by others in similar formulations (e.g., [2],
[14]). Using the high SINR approximation and applying the
transformationpn = esn , the resulting problem becomes
convex in each feasible region. However, the problem as a
whole remains nonconvex as all these feasible regions are
disjoint, resulting in a nonconvex global feasible set.

In order to solve this problem globally, we need to find
the regions that are feasible. Investigating all the possible
regions (2MN ) is a computationally expensive task especially
for large number of variables. To reduce the computational
effort, we observe that SU SINR constraints for a given
region consist of a group of linear inequalities with number
of variables equal to number of inequalities. We can consider
these linear inequalities as equalities and solve forpn. The
resulting solution, say (P ∗), is the minimum feasible solution
which satisfies (4). Once we have a (P ∗) value for a given
region we check to see if it satisfiesM PU SINR constraints
and also theN power budget constraints. If these constraints
are violated atp = P ∗, it means that there is no feasible
p that satisfies the violated PU SINR and the power budget
constraints without violating the SU SINR constraints. Using
this reasoning, we can eliminate all the infeasible regionsusing
a tree pruning method. We start with the lowest branch of the
tree which has the smallest number of variables. Note that
this branch defines a feasible region. We then solve the SU
SINR linear equations for that region and then check if the
solution violates the PU SINR or power budget constraints. If
it violates any of these constraints, the region is eliminated and
is not considered any further. We know that if a combination
of some users active over some frequency band is infeasible
then all combinations that are supersets of that combination
are also infeasible. Then, we can prune that branch of the tree.

For each of the remaining feasible regions, we have a
convex optimization problem which can be solved globally and
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Fig. 1. Possible Scenarios in Secondary Power Allocations

TABLE I
COMPARISON OFNUMBER OF FEASIBLE REGIONS WITH PROBLEM SIZE

N K No. variables No. Regions Feasible Regions
4 3 12 4096 127
7 2 14 16384 375
8 2 16 65536 2144
9 2 18 262144 3356
10 2 20 1048576 55281

efficiently. The optimum solutions for each of these regions
are stored and then compared to find the best solution, i.e.,
maximum sum-rate, and the corresponding power allocation
vector.

If the SINR thresholdγ∗

n is sufficiently large (i.e.,log(1 +
x) ≈ log(x)), CRTP algorithm will find solutions that are very
close to global optimum since the relaxed convex problem
approximates the original problem with high accuracy in the
feasible regions. Note that the tree pruning approach helps
to reduce the computational complexity, which can be a
bottleneck for large problems with too many variables. Table I
shows how the number of regions and the number of feasible
regions scale with the problem size for a specific realization
of the problem. The advantage we get from the tree pruning
method can be deduced from the table.

B. CRGR - Convex Relaxation with Gradual Removal

We note that the complexity of the above CRPT algorithm
is worst-case exponential. In order to find solutions faster, we
propose a heuristic algorithm, referred to as CRGR, based on
convex relaxation with gradual removal. This algorithm is very
similar to the one proposed in [2] without the QoS constraints.
Although this method does not guarantee an optimum solution,
it can give good solutions with less computational effort.

Several different disjoint regions exist in the problem be-
cause of SU SINR constraints, which differ from region to
region. Without SU SINR constraints, the remaining con-
straints define a space which is an intersection of halfspaces.
This means the optimization space becomes a convex set. In
CRGR, we use the same high SINR approximation as before
(log(1 + x) ≈ log(x)) and apply thep = es transformation.
The resulting problem is convex. After solving this problem
without the SU SINR constraints, we iteratively remove the
links which violate the (SU and PU SINR) constraints the
most, and also links for which the power level as a result of
optimization is close to zero. This process is repeated until
we get a solution which satisfies all the PU, SU and power
budget constraints.

C. GA - Genetic Algorithm

Heuristic artificial intelligence techniques have been used
to solve NP-hard problems which tend to exploit the structure

of the problem and arrive at a good solution. In this section,
we solve P1 with a genetic algorithm (GA) which belongs
to the evolutionary class of artificial intelligence techniques.
Following is the description of the GA employed in this paper.

1) Representation: A gene/solution is a structure compris-
ing of N ×K real variables corresponding to the powers of
SUs. Letpt

i be a solution with elementsptn(k) at time t and
i ∈ {1, . . . ,S} whereS is the population size.

2) Initialization: The population is created by initializing
each variable in each gene according to uniform random
distribution between its lower and upper bounds.

Note that given the variable bounds[0, pmax], it is very
unlikely that some solutions have the formpn(k) = 0, ∀k
wherepn = 0 indicates the SU link is turned off andpn < 0
denotes that the linkn is active where< is the element-
wise greater operator. In this form, GA fails to provide good
solutions since it becomes hard to discover all the feasible
regions. This fact motivates modifications that would increase
the probability of creating individuals in each and every
feasible region. Therefore, we change the variable bounds from
[0, pmax] to [−pmax, pmax]. Whenever a variable is less than
zero, we treat it as equal to zero while evaluating the function.
This modification provides more homogenous distribution for
generating different types of SU admission strategies (some
SU links are and on some of them off) and GA better explores
the feasible regions.

3) Selection: The individuals that will go into the mating
pool are chosen according to tournament selection [15].

4) Crossover: From the current population,2× S random
pairs of individuals are created and the best of each pair is
passed on into the mating pool. The individuals in the mating
pool undergo Simulated Binary Crossover (SBX)[15] to form
the offspring solutions. Letpt

1 andpt
2 be two parent solutions,

then the offspring solutions are created according to,

p
t+1

1 = 0.5[(1 + βq)p
t
1 + (1− βq)p

t
1],

p
t+1

2 = 0.5[(1 − βq)p
t
2 + (1 + βq)p

t
2],

whereβq follows the probability distribution as defined in [15].
In order to promote diversity, the negative elements ofpt

1

andpt
2 are first updated by a new value which is uniformly

generated within the interval[−pmax, 0]. Then the SBX oper-
ation defined above is performed.

5) Mutation: If ptn(k) > 0, polynomial mutation is per-
formed [15]. If ptn(k) < 0 then any of the following mutations
is performed: (i)ptn(k) = rand[0; pmax]. This means, if we
mutate a variable which is OFF, we turn it ON and assign it a
random power. (ii) The user is turned ON at a power at which
it just satisfies its SINR constraint. (iii) The user is turned ON



at a power which is equal to the average of its power at other
channels.

6) Elitism: All solutions of generationt and t − 1 are
combined and the best solutions from this set go to population
of t+ 1.

7) Evaluate: Repeat Steps 2 through 6 until the solution
does not improve significantly, i.e., the best function value
does not improve by more than0.1 percent, for some number
of iterations.

IV. M AXIMIZATION OF SUM-RATE AND M INIMIZATION OF
NETWORK POWER UNDER QOS CONSTRAINTS

In this section, we consider joint minimization of total
power consumption and maximization of sum-rate of the CRN.
Minimizing total network power is an important problem es-
pecially when the network has a constraint on the interference
it can cause to other neighboring networks. Our bi-objective
optimization problem referred to as P2 is defined as follows.

Find pn, ∀n ∈ SU

Minimize

{

−

N
∑

n=1

Rn(pn)

}

,

{

N
∑

n=1

K
∑

k=1

pn(k)

}

(7)

Subject to Constraints of P1 (8)

P2 is a multiobjective optimization problem (MOP) for
which one needs to find a set of Pareto optimal (trade-off)
solutions (non-dominated by any other solution) between the
two objectives. After finding the set of trade-off solutions, final
decision is made by the network controller to select one of
these solutions. A well-known technique for solving MOPs is
to minimize a weighted sum of the objectives. However, mini-
mizing the weighted sum of the objectives suffers from several
drawbacks. As an example, a uniform spread of weights rarely
produces a uniform spread of points on the Pareto front hence
the entire Pareto-optimal front can not be exploited. For this
problem, we use a modified version of NSGA-II [6], which is a
state of the art multiobjective evolutionary algorithm. Initially,
population of sizeS is duplicated by crossover and mutation
operations which are explained in the previous section. NSGA-
II is an elitist algorithm which uses a non-domination ranking
approach where solutions in the duplicated population are
ranked according to fronts they belong to. For instance, a
solution belongs to the first front, if no other solution in
the population dominates it. Similarly, the second front is
composed of only the solutions that are dominated by the
first front and so on. After several iterations, the NSGA-II
population consist of non-dominated solutions which belong
to the Pareto-optimal front.

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the
performance of our proposed algorithms. The transmit power
of each primary transmitter and the power budgetPB for each
secondary transmitter are set to6 dB and−3 dB, respectively.
The SINR thresholds for PUs and SUs areγ∗

m = 20 dB
and γ∗

n = 10 dB for n = 1, . . . , N and m = 1, . . . ,M ,
respectively. We consider an area of5 × 5 kilometers. PU
and SU transmitters are randomly deployed in the area. PU
receivers are randomly deployed withinζk distance of their
respective transmitters, whereζk is chosen to provide20 dB
at the boundary of their deployment region. Note that we
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Fig. 3. Performance of CRGR versus GA for P1

set M = K as explained in Section III, i.e, the number
of subbands is equal to the number of primary users. Each
subband has a bandwidth ofB = 6 MHz. Attenuation constant
α = 4. SU receivers are randomly deployed within∆ distance
of their respective transmitters.

We vary ∆ from 100 meters to500 meters and provide
sum-rate results averaged over100 Monte Carlo simulations
for each∆ value. Figure 2 depicts normalized sum-rate results,
i.e., 1

B

∑

n
Rn, obtained for the case whenN = M = K = 3.

As expected, the optimum sum-rate values decrease as∆
increases, because high∆ values imply low SINR at the
secondary receivers. Since SU SINR thresholds are selected
to beγ∗

n = 10 dB, one should note that the function approx-
imation log(1 + SINR) ≈ log(SINR) is highly accurate in
feasible regions. Therefore, CRTP should provide solutions
that are very close to the global optimum. In this case,
the solutions obtained by CRTP can be used as benchmarks
for those obtained by CRGR and GA. As is clear from
Figure 2, GA performs very close to CRTP. Among the three
algorithms, CRGR performs the worst in terms of maximizing
sum-rate. The complexity of the CRTP algorithm is worst-
case exponential, which can be computationally prohibitive
for large problems. In contrast, the CRGR algorithm has the
lowest computational complexity because of its greedy nature.
Therefore, it is scalable for larger problems with high number
of users and frequency bands. GA provides a balance between
optimality and computational complexity, since it can provide
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solutions that are very close to that of the CRTP with reduced
computational complexity. In Figure 3, we compare sum-rate
solutions obtained by CRGR and GA for different sizes of
shared frequency bands. It is clear from the figure that as
K increases, i.e., as the shared bandwidth gets larger, the
maximum sum-rate increases as expected. Furthermore, the
performance of the CRGR algorithm is very close to that of
the GA.

Figure 4 shows the Pareto front containing 200 non-
dominated solutions for a particular realization of P2 when
N = 3 andM = K = 4. The Pareto front is obtained after
after 200,000 function evaluations. A particular solutionthat
belongs to the Pareto front is a solution to our first problem
with one additional constraint on the total network power.
Therefore, we can verify the Pareto optimal solutions by
selecting some test points on the Pareto front by constraining
the total network power and maximizing sum-rate through
GA developed for P1. These solutions are denoted by triangle
points on Figure 4. It is interesting to see from Figure 4 that
the normalized sum-rate can be increased from0 to about100
bits/s with only an incremental increase (0.02 Watts) in the
total network power. The Pareto front obtained by our modified
NSGA-II algorithm helps the network controller clearly see
the trade offs between different solutions. The advantage of
formulating multiobjective optimization problems for CRNs
is clear in this example.

VI. CONCLUSION

We investigated two optimization problems in multiband
cognitive radio networks with PU and SU QoS constraints: i)
sum-rate maximization, ii) sum-rate maximization and power
minimization. Optimization variables are activation of links
and power values allocated over the shared frequency band.
Motivated by the fact that these problems are NP-hard, we
developed three suboptimal algorithms based on convex relax-
ation with tree pruning (CRTP), convex relaxation with gradual
removal (CRGR) and genetic algorithms (GA). Each algorithm
offers different trade offs in optimality and computational
complexity. CRTP provides the best performance in terms of
optimality; however, it is computationally the most expensive
algorithm. CRGR offers the lowest computational complexity;
however it suffers from high degree of suboptimality. GA
provides a balance between optimality and computational
complexity. For the second problem, we developed an ef-

ficient multiobjective optimization algorithm based on the
modified NSGA-II. Simulations results demonstrated that our
algorithms provide excellent performance and offer various
alternative solutions to the network controller.

In the future, we will extend our formulations to other
communication scenarios in cognitive radio networks. Such
scenarios include heterogeneous QoS constraints for different
users such as combinations of data rate and SINR constraints,
and other objective functions such as maximizing number of
active users.
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