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Abstract—We consider the problem of joint admission control widely considered in the literature [2], [3], [4], [5] as a
and power allocation in a multiband cognitive radio network system optimization criterion, especially in the contett o
(CRN) coexisting with multiple narrowband primary systems, agitional wireless networks. In our first problem, givéret

and investigate two separate optimization problems: i) suntate . .
maximization under primary user (PU) and secondary user (SY QoS requirements of the PUs, each SU admission strategy

quality of service (QoS) constraints; ii) sum-rate maximiation Yields a different solution region in terms of power vari-
and power minimization under PU and SU QoS constraints. We ables and solution regions are disjoint. For an SU admission
first show that these problems are NP-hard. Then we propose strategy, if there exists a power allocation strategy meeti
three different suboptimal algorithms for the first problem QoS requirements of all the PUs and the admitted SUs
based on convex relaxation with tree pruning (CRTP), convex = . Lo .
relaxation with gradual removal (CRGR) and genetic algoritms simultaneously, then that SOIUt'Or.‘ region 1S dee_med astfieas .
(GA). These algorithms offer different tradeoffs in terms o TO the best of our knowledge, this kind of multiband scenario
goodness of their solutions and computational complexityFor ~ with multiple joint requirements has not been considered in
tionai - ) ple ) q
the second problem, we propose a multiobjective evolutiom#t  the cognitive radio literature. Similar to the sum-rate max
algorithm which can generate a Pareto front in a time-effici@t  ization problem, network power minimization has also been

manner. Simulation results are provided to evaluate the prposed widely investigated. However, to the best of our knowledge,

algorithms.
gIndex Terms—Cognitive radio networks, resource allocation, these two problems have not been investigated together in a
optimization algorithms. multiobjective framework. This work serves as our attenopt t
introduce a network wide multiobjective optimization plein
|. INTRODUCTION for sum-rate maximization and power minimization in CRNs,

With the rapidly growing demand for wireless accessnd propose multiobjective optimization algorithms toaiit
cognitive radio networking has become an active area thfe set of Pareto optimal solutions.
research. The concept obgnitive radio network (CRN) was We show that the sum-rate maximization problem with QoS
proposed as a solution to maximize the efficiency of spectruwranstraints is NP-hard, which implies that our second bl
usage, where secondary (unlicensed or low-priority) usars is also NP-hard. This result motivates the development of
access the licensed spectrum as long as they do not catmmputationally efficient suboptimal algorithms. We prego
any “harmful” interference to the primary (licensed or highthree different algorithms to maximize sum-rate. The first
priority) network. Two popular approaches for implemegtinalgorithm iteratively attempts to find the feasible regiosig
cognitive radio networking are spectrum overlay and spectr a tree pruning approach. Then, in each feasible region, the
underlay [1]. In the spectrum overlay approach, secondasglution is obtained by first approximating the original ob-
users (SUs) deteapectrum holes (frequency bands not usedjective function (using a high signal-to-interferencesphoise
by primary users) by sensing the whole spectrum, and thetio (SINR) approximation) and then using a transfornratio
transmit over them. In spectrum underlay approach, Sltisat transforms the original nonconvex problem into a canve
coexist with the primary users (PUs) over a shared spectrame. The second algorithm iteratively eliminates the isifele
band as long as they don't violate any PU quality-of-servidmks using a heuristic methodology where the algorithnt firs
(Qo0S) constraints. ignores the constraints in the original problem and uses a

In this paper, we focus on multiband CRNs utilizingconvex transformation as in the first algorithm, and then
spectrum underlay approach and investigate two optinozatideletes the infeasible links using the constraints in thgiroal
problems: i) Sum-rate maximization of the network undesroblem. The third algorithm is based on a genetic algorithm
PU and SU QoS constraints; ii) Sum-rate maximization ar{@A) which is a stochastic optimization algorithm widelyeds
power minimization of the network under PU and SU Qofr NP-hard problems.
constraints. We consider a scenario where there are a numbérhe second problem formulation is a multiobjective problem
of ongoing PU transmissions. The secondary network hims which one needs to find a set of Pareto optimal solutions
a number of transmission requests which have some givgrade-off solutions between two objectives) rather than a
QoS constraints. Secondary transmissions are not allowedsingle solution. After finding the set of optimal solutiorits,
violate any existing PU QoS constraints. The problem is te up to the central controller to select one of these satstio
select which secondary links to activate (admission céntraMultiobjective optimization problems can be solved by evo-
and to find how to allocate power over the shared frequenititionary algorithms such as non-dominated sorting geneti
band for those activated secondary links in the context afgorithm-Il (NSGA-II) [6]. The original NSGA-II is unableo
given optimization problems. Sum-rate maximization hasnbeprovide good solutions for our problem. Therefore, we mpdif



the original NSGA-II algorithm to improve its performancemethodology. Secondary users utilize multiband techriédae
Simulation results are provided to show the performance afcess the spectrum and each secondary user has a power
our modified algorithm. budget denoted by 5.

The rest of the paper is organized as follows. In Section Il, The problem is to maximize the spectral efficiency of the
we introduce the system model and general problem statemeaetondary network while satisfying three sets of condsair)
Sum-rate maximization problem is formulated in Section IlISINR constraints at the primary receivers, 2) SINR constsai
where we also present our proposed algorithms. In Sectiahthe secondary receivers, 3) power budget constrainteat t
IV, we introduce our multiobjective optimization problemsecondary transmitters. Next, we provide the details of our
i.e., sum-rate maximization and power minimization pramnle problem formulations and proposed algorithms.
and present the modified NSGA-Il algorithm. We provide
numerical results in Section V. Finally, concluding rensark ~ !!l- M AXIMIZATION OF SUM-RATE UNDER QOS
and directions for future work are presented in Section VI. CONSTRAINTS
Without loss of generality, we consider the worst case sce-

Il. SYSTEM MODEL AND PROBLEM STATEMENT nario, where the available frequency band is entirely oiglip

Consider a spectrum underlay CRN, where the availal§ primary users. We assume that each primary user occupies
frequency band can be shared between SUs and PUs in ghéingle subband and they operate on disjoint subbands. This
network as long as SU transmitters do not create harmfilsults in the equality/ = K. These assumptions are made for
interference at PU receivers. We assume that the shargfiational convenience and they do not impact our formula-
spectrum is divided intds discrete frequency subbands andions. Given primary network activity and location of usete
without loss of generality, each subband has an identiagdtimization problem is to maximize sum-rate (or achieeabl
bandwidth of B Hz. This set of assumptions is applicableapacity) of the secondary network. The optimization \zea
to systems using orthogonal-frequency-division-muéthg are power levels allocated to each secondary user over each
(OFDM) technology which has been widely advocated to beshared frequency subband.
promising candidate technology for cognitive radio netsor Define p, 2 [p,(1),...,p.(K)]” as the power allocation
[7]. Our formulations are based on the physical model [8}ector where each element represents the power level tdtbca
which provides a realistic modeling of the physical commue usern over each subband. Useris said to be inactive over
nication environment by utilizing the path-loss model. Thgequency band: if p,(k) = 0. A user is said to be active
path loss between a transmitter-receiver paifs given as if it is transmitting on at least one subband. LB} denote
L, = C/f*dy, whereC is a constantf is the subband carrier, the set of frequency channels with nonzero power allocation
(dn, > 0) is the distance between transmitterand receiver for sessionn, which implies|F,| < K. The notation| - |
n, anda is the attenuation constant. We assume that the patbpresents the cardinality of a set. In this case, our gettin
loss in the received power is the dominant loss factor, angquires that.F,,| = 1 for all m € P, and F; N F; = 0 if
therefore, we neglect the effects of shadowing and mutti-pa; -£ j andi,j € P. An SU is allowed to transmit on a carrier,

fading. _ . if and only if it does not violate any SINR or power budget
For notational convenience, we number each secondary @uhstraints.
primary transmitter-receiver pair by the indicease N = We can now formulate the sum-rate maximization problem,

{1,...,N} andm € M = {1,..., M}, respectively, and referred to as P1, as follows:
refer to them as users. Throughout the paper, the terms
subband and carrier are used interchangeably. We assume
Gaussian channel with zero mean and variaige and that o
the received interference is treated as white noise. Under Maximize ZR ®.)
these assumptions, the achievable data rate of wsmm be — " Pn
expressed [9] as: "

Find p,, VYneSU

)

Subject to v (k) > Vi, VmeM, Vke F,, (3)

K x

(k) 2 Xpn(k))vn, YREN, Vk (4

fin = B2 sl 2200 pa(k) >0, e N, Vk, ©

B K
wherelog is defined in base and %gk) is the signal-to- an(k) <PP Vnen. (6)
interference-plus-noise ratio (SINR) of usemon carrierk, st -

() 2 P (k) Ln () _ 1) In PL,I(-) is the indicator function for the set of positive

No + X ienun izn Pr(R) Li(K) real numbers. Inequality (3) represents a setkaf= M)

The SINR condition for establishing a successful communicg NR_constraints for the primary users. The inequality (4)
tion link n on carrierk is given by (k) > 7 L. represents a set aV x K SINR constraints for each oV
Without loss of generality, we assume a narrowband prim S 0\_/ter teacfh ofF freqqfenc;(/j Su?ba??ﬁ' Tsr:le\lRSthV\t”rIJ t
network, where a single channel with predetermined transr{R"SMit at a frequency, if and only If the or that
power values is allocated to each primary user. This sceisari 'K IS greater than or equal to the threshold SINR. If thé lin
applicable to networks where legacy radios have the licetwse IS NOt active over that subband, i.e. yif (k) = 0, the SINR
operate on narrowband channels. Generalization to a witteb onstraint is automatically satisfied. It should be noteat th

primary network is straightforward and does not affect t el IS in fact asoft-spectrum allocation and power allocation
problem. The difference between conventional spectrum and

Ly* is the minimum required SINR in order to maintain a certaimligy- POWEr allocation formulations that have been considered in
of-service (QoS), e.g., bit error rate (BER). the literature, e.g. [10], [11], and our problem P1 is that



conventional formulations treat spectrum allocation asalh with tree pruning; 2) convex relaxation with gradual rempva
allocation problem such that no two users share the saB)egenetic algorithms. The comparison of these three algo-
spectrum. In conventional settings, spectrum allocatisn fithms in terms of finding good solutions and time complexity
carried out first based on channel conditions followed hyill be investigated later. The following subsections pdev
power allocation [10], [11]. However, in our formulatiomet detailed description of the algorithms.

constraint in (4) provides a way to allocate the spectrtum Q' ~pTP: Convex Relaxation with Tree Pruning

such a way that multiple SUs can share the spectrum as lon . . L
y P P e start by noting that different combinations of ON and

as their QoS constraints are not violated. . ! ; L . )
Q OFF power variables define different disjoint regions incgpa

Proposition 1: The sum-rate maximization problem with ; - i
QoS cF:)onsltraints P1 is llJ\lP-hard. ximization p W Each of these regions differ from each other by order of dimen

Proof: We prove this by restriction [12]. It was shown in
4] that the sum-rate maximization problem without the QoS . ) ' .
[co]nstraints is NP-hard. The sum—raFI)te maximization problefflich are feasible depends on the locations of secondary and
P1, which has the primary and secondary QoS constraints, mlil_lr:nary usr(?r? In Fgle network. there atd | PU SINR
cludes the problem without the QoS constraints as a resdrict or each feasible region, there Inéar

: e . “constraintsNV linear power budget constraints and some linear
Ege;é?tlir(]:gaif.jggcicglm é% ﬁgeg):r?;zz:gfé?g pg(ikzls{aﬁgﬁlslgsu SINR constraints whose number depends upon the number

NP-hard m ©°f non zero elements of the power vecy. Furthermore,

The NP-hardness of the above problem motivates the d(%‘e note that the objective function is nonconvex. In order to

velopment of efficient suboptimal algorithms. In order tc un leviate tht_e nr;onclonvexnwy l|ssue, V\Le. Er_st tl'JSr?t ';he folllowmg
derstand the problem better, let us consider a simple e)aamgtlpsr,%(\'frgaf gg('l'h+ z) ~ log(z) whic t.'s '% obr vaiues d
of two SUs, one PU and one frequency subband. For a givi o1 5] fc d'ff e ?ameblapproxllma lon ats eekn :rlga €
set of locations, we draw the SU SINR constraints given [2l, L] orr] ' erﬁn proh em_s. rLS? recent wor L ]
(4) in Figure 1(a). For now, we ignore the SINR constraints'e authors fave S owhn thal. o ce 'hc’ Mb'> 0 Isﬁtmn?:
for PUs. The area inside the square formed by the bounlﬂﬁ'que trans ormatu])Vn that transforms the 0_ jective t
on the SU power budget is the region where power budgéfined byg(p) = >, _, log (m) into a convex
constraints are satisfied. There are four possibilitieth B4Js  function. Note that ing(.), we setk = 1 for notational
transmit, only the first SU transmits, only the second Stbnvenience andi;,, := L;/L,. The same transformation
transmits, or both SUs are off. When both SUs transmit, SINfis been used by others in similar formulations (e.g., [2],
constraints for both SUs must be satisfied simultaneough4]). Using the high SINR approximation and applying the
which is represented by the gray region in Figure 1(a). Wheransformationp,, = e®", the resulting problem becomes
only SU, transmits, only the SINR constraint f6fU, needs convex in each feasible region. However, the problem as a
to be satisfied. In that case, the constraint in (4) $&f, is whole remains nonconvex as all these feasible regions are
automatically satisfied becaugg = 0. Here, the dark line disjoint, resulting in a nonconvex global feasible set.
on the horizontal axis is feasible. Similar case holds whenlin order to solve this problem globally, we need to find
only SU, transmits. When both are off, the constraints in (4he regions that are feasible. Investigating all the pdssib
are automatically satisfied and this region is a single poirdgions 2¥¥) is a computationally expensive task especially
(0,0). Now, with a different set of locations, it is possiblefor large number of variables. To reduce the computational
that the receivers of both SUs are close to each other. Theffort, we observe that SU SINR constraints for a given
the constraint region may look as shown in Figure 1(b). Hemegion consist of a group of linear inequalities with number
there is no region where both SU SINR constraints for SUs variables equal to number of inequalities. We can comside
and power budget constraints are satisfied simultaneomslythese linear inequalities as equalities and solvepior The
other words, it is not feasible for bothU, and SU, to resulting solution, sayR*), is the minimum feasible solution
transmit together. Another scenario could arise when somich satisfies (4). Once we have B*) value for a given
secondary transmitters and receivers are so far apart,eor thgion we check to see if it satisfidd PU SINR constraints
receiver is so close to the PU transmitter such that thereaisd also theV power budget constraints. If these constraints
no region when that user can be active, i.e, there is no regiax@ violated atp = P*, it means that there is no feasible
when the power budget as well as the SINR constraint fprthat satisfies the violated PU SINR and the power budget
that SU is satisfied simultaneously. This scenario is shewn d¢onstraints without violating the SU SINR constraints. ndsi
Figure 1(c). Note that, if this is the case, i.e., an SU canniiis reasoning, we can eliminate all the infeasible regisisg
transmit even when other SU’s are OFF, then the possibilidytree pruning method. We start with the lowest branch of the
of that SU transmitting when others are ON is automaticaltyee which has the smallest number of variables. Note that
eliminated. We now consider the PU constraints defined his branch defines a feasible region. We then solve the SU
(3). For a given constant PU transmit power, the constréntsSINR linear equations for that region and then check if the
(3) define halfspaces. Therefore, in the above three sapargolution violates the PU SINR or power budget constraitits. |
the addition of linear PU constraints will only reduce thé violates any of these constraints, the region is elingdatnd
volume of the feasible regions shown in Figures 1(a)-1(& not considered any further. We know that if a combination
for a 2 dimensional case. Resulting feasible regions will bef some users active over some frequency band is infeasible
the intersection of the previous regions and the additiondlen all combinations that are supersets of that combinatio
halfspaces. are also infeasible. Then, we can prune that branch of tke tre
We propose three different algorithms to solve the aboveFor each of the remaining feasible regions, we have a
problem based on the following methods: 1) convex relarati@onvex optimization problem which can be solved globallgt an
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Fig. 1. Possible Scenarios in Secondary Power Allocations
TABLE | . . . .
CoMPARISON OFNUMBER OF FEASIBLE REGIONS wiTHProBLEM Size  Of the problem and arrive at a good solution. In this section,
N T K | No. varables | No. Regions| Feasible Regions we solve P1 with a genetic algorithm (GA) which belongs
4| 3 12 2096 127 to the evolutionary class of artificial intelligence teaiunés.
712 14 16384 375 Following is the description of the GA employed in this paper
12 e bRl s 1) Representation: A gene/solution is a structure compris-
012 >0 1048576 EE5081 ing of N x K real variables corresponding to the powers of

SUs. Letp! be a solution with elements, (k) at timet and

efficiently. The optimum solutions for each of these regiorfs< {1, .-, S} wheres is the population size.
are stored and then compared to find the best solution, i.e.2) Initidization: The population is created by initializing
maximum sum-rate, and the corresponding power allocati§ACh variable in each gene according to uniform random
vector. distribution between its lower and upper bounds.

If the SINR thresholdy is sufficiently large (i.e.Jog(1+  Note that given the variable bounds, p,...), it is very
z) ~ log(z)), CRTP algorithm will find solutions that are veryunlikely that some solutions have the form (k) = 0,Vk
close to global optimum since the relaxed convex problef€rép. = 0 indicates the SU link is turned off and, > 0
approximates the original problem with high accuracy in trféénotes that the link: is active where;= is the element-
feasible regions. Note that the tree pruning approach heM¥i$€ greater operator. In this form, GA fails to provide good
to reduce the computational complexity, which can be g.plgt|0ns since it beqomes haro! to gﬂscover all the_fea5|ble
bottleneck for large problems with too many variables. @bl "€gions. This fact motivates modifications that would imsee
shows how the number of regions and the number of feasiit¢ Probability of creating individuals in each and every
regions scale with the problem size for a specific realimti(i%as'ble region. Therefore, we change the variable bounds f

of the problem. The advantage we get from the tree prunitfyy Pmaz] 10 [=Pmaz, Pmaz]. Whenever a variable is less than
method can be deduced from the table. zero, we treat it as equal to zero while evaluating the fancti

This modification provides more homogenous distribution fo

B. CRGR - Convex Relaxation with Gradual Removal generating different types of SU admission strategies ésom

We note that the complexity of the above CRPT algorithi®U links are and on some of them off) and GA better explores
is worst-case exponential. In order to find solutions faster the feasible regions. _ _ _
propose a heuristic algorithm, referred to as CRGR, based ord) Selection: The individuals that will go into the mating
convex relaxation with gradual removal. This algorithmésy Pool are chosen according to tournament selection [15].
similar to the one proposed in [2] without the QoS constrint 4) Crossover: From the current populatio2, x S random
Although this method does not guarantee an optimum solutidiirs of individuals are created and the best of each pair is
it can give good solutions with less computational effort. ~Passed on into the mating pool. The individuals in the mating

Several different disjoint regions exist in the problem bd2ool undergo Simulated Binary Crossover (SBX)[15] to form
cause of SU SINR constraints, which differ from region téhe offspring solutions. Lep; andp}, be two parent solutions,
region. Without SU SINR constraints, the remaining corthen the offspring solutions are created according to,
straints define a space which is an intersection of halfspace

This means the optimization space becomes a convex set. In pitt = 0.5[(1 + By)pt + (1 — By)pil,
CRGR, we use the same high SINR approximation as before pL = 0.5[(1 = B)pb + (1 + B,)pbl,

(log(1 4+ z) =~ log(x)) and apply thep = e° transformation.
The resulting problem is convex. After solving this problerwheres, follows the probability distribution as defined in [15].
without the SU SINR constraints, we iteratively remove the In order to promote diversity, the negative elementpbf
links which violate the (SU and PU SINR) constraints thend p} are first updated by a new value which is uniformly
most, and also links for which the power level as a result generated within the intervéh-p;,..., 0]. Then the SBX oper-
optimization is close to zero. This process is repeated uration defined above is performed.

we get a solution which satisfies all the PU, SU and power5) Mutation: If p, (k) > 0, polynomial mutation is per-

budget constraints. formed [15]. Ifpf (k) < 0 then any of the following mutations
) . is performed: (i)p!, (k) = rand|0; pmax]. This means, if we
C. GA - Genetic Algorithm mutate a variable which is OFF, we turn it ON and assign it a

Heuristic artificial intelligence techniques have beenduseandom power. (ii) The user is turned ON at a power at which
to solve NP-hard problems which tend to exploit the struetuit just satisfies its SINR constraint. (iii) The user is tuin@N
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at a power which is equal to the average of its power at other ——crip
channels. 130 o SReR]l

6) Elitism: All solutions of generatiory andt¢ — 1 are
combined and the best solutions from this set go to populatio
of t+ 1.

7) Evaluate: Repeat Steps 2 through 6 until the solution
does not improve significantly, i.e., the best function ealu
does not improve by more thdnl percent, for some number
of iterations.
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IV. M AXIMIZATION OF SUM-RATE AND MINIMIZATION OF
NETWORK POWER UNDER QOS CONSTRAINTS
60

In this section, we consider joint minimization of total i
power consumption and maximization of sum-rate of the CRN. T T e e e e e
Minimizing total network power is an important problem es- am
pecially when the network has a constraint on the interfezen
it can cause to other neighboring networks. Our bi-objectiv

optimization problem referred to as P2 is defined as follows.

701

N

Fig. Performance of Proposed Algorithms for P1 (N=M=K=3)

2001 —o6— CRGR (N=3, M=3)

% GA (N=3, M=3)
—%— CRGR (N=3, M=4)
A GA (N=3, M=4)
—&— CRGR (N=3, M=5)
¢+ GA (N=3, M=5)

Find p,, VneSuU

Minimize {—ZRn(pn)} , {Z an(k)} ) )

160

Subject to  Constraints of P1 (8)

1408
P2 is a multiobjective optimization problem (MOP) for
which one needs to find a set of Pareto optimal (trade-off)
solutions (non-dominated by any other solution) between th

two objectives. After finding the set of trade-off solutiofiral

120

Normalized Sum-Rate (bits/s)

100

decision is made by the network controller to select one of sof ]
these solutions. A well-known technique for solving MOPs is 3
to minimize a weighted sum of the objectives. However, mini- s
mizing the weighted sum of the objectives suffers from saver am

drawbacks. As an example, a uniform spread of weights rarely
produces a uniform spread of points on the Pareto front hence
the entire Pareto-optimal front can not be exploited. F@8 thset M = K as explained in Section lll, i.e, the number
problem, we use a modified version of NSGA-II [6], which is @f subbands is equal to the number of primary users. Each
state of the art multiobjective evolutionary algorithmitibdly, subband has a bandwidth Bf= 6 MHz. Attenuation constant
population of sizeS is duplicated by crossover and mutationy = 4. SU receivers are randomly deployed witiindistance
operations which are explained in the previous section. NSGof their respective transmitters.
Il is an elitist algorithm which uses a non-domination rargki  We vary A from 100 meters to500 meters and provide
approach where solutions in the duplicated population asem-rate results averaged ovél) Monte Carlo simulations
ranked according to fronts they belong to. For instance,fer eachA value. Figure 2 depicts normalized sum-rate results,
solution belongs to the first front, if no other solution in.e., £ > R,, obtained for the case whe¥ = M = K = 3.
the population dominates it. Similarly, the second front i&s expected, the optimum sum-rate values decreasé\ as
composed of only the solutions that are dominated by tivicreases, because high values imply low SINR at the
first front and so on. After several iterations, the NSGA-Isecondary receivers. Since SU SINR thresholds are selected
population consist of non-dominated solutions which bglono be~* = 10 dB, one should note that the function approx-
to the Pareto-optimal front. imationlog(1 + SINR) = log(SINR) is highly accurate in
feasible regions. Therefore, CRTP should provide solstion
V. NUMERICAL RESULTS that are very close to the global optimum. In this case,
In this section, we provide numerical results to evaluage tithe solutions obtained by CRTP can be used as benchmarks
performance of our proposed algorithms. The transmit powfer those obtained by CRGR and GA. As is clear from
of each primary transmitter and the power budBé&tfor each Figure 2, GA performs very close to CRTP. Among the three
secondary transmitter are set@@B and—3 dB, respectively. algorithms, CRGR performs the worst in terms of maximizing
The SINR thresholds for PUs and SUs ayg = 20 dB sum-rate. The complexity of the CRTP algorithm is worst-
andv; = 10 dB forn = 1,...,N andm = 1,...,M, case exponential, which can be computationally prohibitiv
respectively. We consider an area ®fx 5 kilometers. PU for large problems. In contrast, the CRGR algorithm has the
and SU transmitters are randomly deployed in the area. Rivest computational complexity because of its greedyneatu
receivers are randomly deployed withjp distance of their Therefore, it is scalable for larger problems with high nemb
respective transmitters, whefg is chosen to provid€0 dB of users and frequency bands. GA provides a balance between
at the boundary of their deployment region. Note that waptimality and computational complexity, since it can pdev

Fig. 3. Performance of CRGR versus GA for P1
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ficient multiobjective optimization algorithm based on the
modified NSGA-II. Simulations results demonstrated that ou
algorithms provide excellent performance and offer vagiou
alternative solutions to the network controller.

In the future, we will extend our formulations to other
communication scenarios in cognitive radio networks. Such
scenarios include heterogeneous QoS constraints forretiffe
users such as combinations of data rate and SINR constraints
and other objective functions such as maximizing number of
active users.

O Pareto Optimal Solutions by NSGA-II

14F Constrained Single Objective Solution by GA

Total Network Power (W)
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Fig. 4. Pareto Optimal Fronts for P2

solutions obtained by CRGR and GA for different sizes dResearch Laboratory or the U.S. Government.

shared frequency bands. It is clear from the figure that as

K increases, i.e., as the shared bandwidth gets larger, the
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