
Unifying Evolutionary Algorithms and Improving Differential

Evolution

Nikhil Padhye
Department of Mechanical Engineering (MechE)

Massachusetts Institute of Technology (MIT) Cambridge, USA
npdhye@mit.edu

Piyush Bhardawaj and Kalyanmoy Deb
Department of Mechanical Engineering
Indian Institute of Technology Kanpur

PIN 208016, Uttar Pradesh, India
{piyush,deb}@iitk.ac.in

July 23, 2010

Abstract

In past, only a few attempts have been made in adopting a unified outlook towards dif-
ferent paradigms in Evolutionary Computation. The underlying motivation of these studies
was aimed at gaining better understanding of evolutionary methods, both at the level of
theory as well as application, in order to design efficient evolutionary algorithms for solving
wide-range complex problems. One such attempt is made in this paper, where we reinstate
‘Unified Theory Of Evolutionary Computation’, drawn from past studies, and investigate four
steps – Initialization, Selection, Generation and Replacement, which are sufficient to describe
common Evolutionary Optimization Systems such as Genetic Algorithms, Evolutionary Strate-
gies, Evolutionary Programming, Particle Swarm Optimization and Differential Evolution. As
a next step we consider Differential Evolution, a relatively new evolutionary paradigm, and dis-
cover its inability to efficiently solve unimodal problems when compared against a benchmark
Genetic Algorithm. Targeted towards enhancing DE’s performance, several modifications are
successfully proposed and validated through simulation results. The Unified Approach is found
helpful in understanding the role and re-modeling of DE steps to efficiently solve unimodal
problems.

1 Introduction

Much of the early research and development in evolutionary based computational methods oc-
curred independently without any interaction(s) among various groups [8]. It was around late
1980s and early 1990s when the confluence of these paradigms began, which eventually led to
the agreement on the term “Evolutionary Computation”. Succeeding interactions among the
evolutionary computation researchers led to the breeding of new algorithms, namely, Genetic
Programming (GP), messy GAs, Samuel, CHC, Genocoop, Genitor, etc. The period afterwards
marked the development of two major meta-heuristic techniques for optimization: Particle Swarm
Optimization and Ant Colony Optimization, and the adaption of Genetic Annealing algorithm
which gave birth to Differential Evolution (DE) – all now being tagged under Evolutionary Com-
putation and collectively referred to as Evolutionary Algorithms (EAs).

In-spite of advances in different EA paradigms there has been a lukewarm interest in inves-
tigating a framework which is capable of explaining the overall behavior of an EA. A plausible

1



approach could be to decompose an EA into key standard components. Then, by understand-
ing the role of each component individually and interaction between the components, insights
into the performance of an EA could be obtained. Attempts in past, adopting Unified Approach
towards EC have already been made, for e.g., see [8], [1]. This paper samples concepts from
these two studies and presents a Unified Approach for evolutionary algorithms (GA, ES, EP, PSO
and DE) in context to real-parameter optimization for unimodal problems. The primary focus
is on the performance of standard DE algorithm on same class of problems, compared against a
benchmark genetic algorithm named G3-PCX [3]. After discovering inefficient DE performance,
Unified Approach is adopted in analyzing major DE steps. The DE steps are modified by bor-
rowing ideas from G3-PCX and gradual improvement in performance is noted. Through a series
of seamless modifications the DE performance is enhanced to an extent where it is comparable to
the benchmark results, and the resulting algorithm is found to be equivalent to G3-PCX. Thus,
this study highlights that how one can traverse from modifying one algorithm into the other by
altering the major steps of an algorithm on the basis of functional requirements, and stresses on
the importance of similarities and differences in terms of key steps of an algorithm which give rise
to a difference in performance.

The rest of the paper is structured as follows: Section 2, presents an Unified Framework for
evolutionary optimization algorithms and discusses several EA paradigms based on this frame-
work. Section 3, provides an introduction to test problems chosen in this paper and description
on experimental methodology. The performance of benchmark algorithm, G3-PCX, specifically
designed to solve unimodal problems is also presented. Sections 4 and 5, see performance of
standard DE and several modifications on it for the sake of improvement. Details on several
proposed strategies for modifications are provided, along with the reasoning for their effectiveness
or ineffectiveness. Section 6, concludes the paper and hints on the direction for the future work.

2 Unified Framework For Evolutionary Algorithms

The most notable breaking new ground attempt in adopting A Unified Approach towards Evolu-
tionary Computation is made in [8], serving the goal of presenting an integrated view of Evolution-
ary Computation. This paper takes a step forward in demonstrating – How the Unified Approach
can be utilized in better understanding (and thereby improving) an EA paradigm? In [8] au-
thor outlines a general Evolutionary Optimization System(EOS), which is based on Darwinian
evolutionary system, shown in Figure 1.

Figure 1: Evolutionary Optimization System based on EV-OPT proposed by [8]

Randomly generate the initial population of M individuals
(using a uniform probability distribution over the entire
geno/phenospace) and compute the fitness of each individual.

Do until a defined stopping criterion is met:
– Select member(s) of the current population to be the parent(s).
– Use the selected parent(s) to produce offspring(s).
– Select member(s) of the population to Die.

End Do

Return the individual with best fitness value.

EOS can be assumed to be constant in population size and the optimization task being that

2



of minimization. The key steps in EOS are: (1)Initialization– of the population randmomly, (2)
Selection– of the individual(s) from the population to act as parent(s), (3) Generation– Creation
of offspring(s) from the selected parent(s), and (4)Replacement– Selection of individuals(s) to
survive for the next generation. After Initialization, Selection, Generation and Replacement are
iteratively repeated till some termination criterion is met. Although detailed descriptions on
each step are required before EOS can be simulated, but just a few steps procedure as above is
sufficient to represent major EA paradigms for optimization.

INITIALIZATION SELECTION GENERATION REPLACEMENT

Figure 2: For major Steps in an EOS

EOS described above requires an additional elaboration on population management i.e. how
do offsprings compete for survival. Two popular ways are: (a) Steady State – or incremental model,
implying that offsprings are produced one at a time and immediately compete for the survival
i.e. if the fitness of child is better than the parent selected, the child survives or vice-versa, or (b)
Generational – or batch model, implying that entire batch of child population is created and then
there is competition for survival. We adopt the notation from [8] while representing evolutionary
systems as follows– two populations are maintained: one of size m for parents and second of size
n for offsprings (now the system being represented as EOS(m,n) ). In EOS(m,n), n offsprings
are created from the parent population of size m and then each child competes for space in the
parent population. For, a special case, n = 1 we arrive at steady state model, and any value of
n > 1 symbolizes generational model. EOS s, in this paper, are associated with real parameter
optimization and solutions shall be represented as vectors of real parameter decision variables.
The initialization of population for EOS s shall be done randomly. Next, popular EA paradigms
are discusses as instances of EOS(m,n).

2.1 Real-parameter Genetic Algorithms as EOS(m,n)

In real-parameter genetic algorithm (rGA), the population is randomly initialized, and a set of
genetic operations are performed to create a new population in an iterative manner. Following
briefly describe the major steps:Selection – Role of this operator is to prefer better solutions to
worse ones. Individuals are chosen as parents either deterministically and stochastically. Gen-
eration(Crossover and Mutation)– Crossover operator creates solution(s) from selected parent(s)
and mutation operator modifies the created offspring randomly. Replacement – can be carried
out based on either steady state or generational model, though it is worthwhile to mention that
standard genetic algorithms ([7], [6]) utilized a generational model in which parents survived for
exactly one generation and completely replaced by their offsprings. Thus, standard GAs could be
thought of as EOS(m,m).

2.2 Evolutionary Strategies as EOS(m,n)

Evolutionary Strategies (ES) [10] have been fundamentally different from binary GAs principally
in two ways: (1) ESs used real parameter values, and (2) early ESs did not have any crossover-like
operators. Popular (µ + λ)-ES can be represented in form of EOS(µ, λ) as follows: Selection –
Uniform selection. Generation – Normally Distributed Mutation. Replacement – According to
the Steady State model i.e the best fitness individual from parent and offspring is preserved. Since
offsprings compete with the parents directly, (µ + λ)-ES is an elitist algorithm. (µ, λ)-ES and

3



Recombanative Evolutionary Strategies (µ/ρ + λ)-ES and (µ/ρ, λ)-ES can also be represented in
form of EOS(m,n) by appropriately modifying the key steps.

2.3 Evolutionary Programing as EOS(m,m)

Evolutionary Programming (EP) is a mutation based evolutionary algorithm applicable to real-
parameter optimization [5]. EP is similar to ES in the fact that normally distributed mutations
are performed in both algorithms. In standard EP, each population member is deterministically
selected to create offspring. If we consider an EOS(m,n), with parent and offspring populations of
equal size (m = n), then EP can be represented as EOS(m,m) with following operations: Selec-
tion – Deterministic selection i.e. each individual is selected as a parent. Generation – Normally
distributed mutation with zero mean and fitness-function dependent variance. Replacement – Ac-
cording to the Generational model, 2m parents and children are combined and only m individuals
with best fitness values are preserved for next generation.

2.4 Particle Swarm Optimization as EOS(m,m)

In an interesting study done in [4], authors presented an archive-based evolutionary algorithm
which was equivalent to Particle Swarm Optimization(PSO). Using their analogy, PSO algorithms
can represented as EOS(m,n) with m = n, as follows: Selection – Deterministic selection i.e. each
particle (or individual) is selected as a parent. Generation – Crossover-like operation (same as
particle move equation), and random mutation (same as “turbulence” in PSO). Replacement –
According to the generational model, entire offspring population replaces the parent population
(along with it velocity, personal best and global best are updated).

2.5 Differential Evolution as EOS(m,m)

Differential Evolution (DE) algorithm has emerged as a very competitive form of evolutionary
computing more than a decade ago. The main goal of this study is to develop a thorough
understanding of DE algorithm as an EOS and then systematically exploit this understanding in
improving DE’s performance. As majority of simulations presented in this study are based either
on standard DE, its pseudo code is presented in Figure 3.

Selection, Generation and Replacement steps in DE here are same as those in “DE/best/1/exp”
[9]. The population is scanned serially and for creation of a child, corresponding to any individ-
ual, four parents are selected (i.e. the individual itself, also referred to as base or index parent,
best fitness individual from the previous generation and any two population members chosen at
random). First a donor vector (Vi,t) is created (step a) and then a trial vector (Ui,t) is created
(step b) by stochastically combining elements from Xi,t and Vi,t. This combination is commonly
done using an exponential distribution with crossover factor of CR. If the newly created child Ui,t

is better compared to Xi,t then Ui,t is stored for updating Xi,t+1. It should be noted carefully that
Xi,ts are updated to Xi,t+1s after entire set of Ui,ts are created. Once the population is updated,
the generation counter is incremented and termination criteria is checked.

Following properties of this DE should be noted: (i) There is ‘elitism’ at an individual level
i.e. if the newly created trial vector Ui,t is inferior compared to the individual then individual
is preserved as a child for the next generation and Vi,t is ignored. (ii) The algorithm follows a
generational model i.e. the current population is updated only after the entire offspring population
is created.

4



Figure 3: Standard Differential Evolution Algorithm (DE/best/1/exp), borrowed from [9].

Input DE parameters: scale factor (F), crossover-rate (Cr) and population size (M)
Randomly Generate the initial population of M individuals in the defined region
and compute the fitness of each individual.
Set Generation Counter t = 1
Do until a defined stopping criterion is met:
For i = 1 to M
Selection
– Choose, ith individual (Xi,t), two random individuals (Xr1,t,Xr2,t), and best member
in the population at previous (t − 1) generation (Xbest) as parents
Generation
(a)Create ith Donor Vector:
Vi,t = Xbest,t−1 + F · (Xr1,t − Xr2,t)
(b)Create ith Trial Vector:
Ui,t=CombineElements(Xi,t, Vi,t) // with probability CR

Replacement
If (Fitness(Ui,t)≤Fitness(Xi,t))
Then Xi,t+1 = Ui,t

Else Xi,t+1 = Xi,t

End For
Update(Xbest)

t = t + 1
Update(Pt+1)
End Do

Return the individual with best fitness value.

3 Test Suite

We consider unimodal problems (having one optimum solution) or problems having a few op-
timal solutions, so as to test an algorithm’s ability to progress towards the optimal region and
then to focus to find the optimum with a specified precision. A previous study considered a
number of evolutionary algorithms like, generalized generation gap (G3) model using a parent-
centric crossover (PCX) operator, differential evolution, evolution strategies (ESs), CMA-ES, and
a classical method on following test problems [3]:

Felp =
n

∑

i=1

ix2
i (Ellipsoidal function) (1)

Fsch =

n
∑

i=1





i
∑

j=1

xj





2

(Schwefel’s function) (2)

Fros =
n−1
∑

i=1

(

100(x2
i − xi+1)

2 + (xi − 1)2
)

(Generalized Rosenbrock’s function) (3)

In all these problems we use n = 20 The first two problems have their minimum at x∗

i = 0
with F ∗ = 0 and the third function has its minimum at x∗

i = 1 with F ∗ = 0. We initialize
the population away from the known optima while restricting xi ∈ [−10,−5] for all i, in all
problems. In subsequent generations we do not confine solutions to lie in the above range. After
initialization, we count the number of function evaluations needed for the algorithm to find a
solution close to the optimal solution and we call this our first evaluation criterion S1. We choose

5



a value of 0.1 for this purpose. This criterion will denote how fast an algorithm is able to reach
the optimal region. The second evaluation criterion (S2) involves the overall number of function
evaluations needed to find a solution having a function value very close to the optimal function
value. We choose a value of 10−20 for this purpose.

The earlier extensive study on G3-PCX algorithm reported the best, median and worst number
of function evaluations needed based on 50 different runs on the three problems with the S2

criterion. Table 1 presents those results. G3-PCX outperformed other state-of-the-art algorithms
[3] and is treated as a benchmark for this study.

Table 1: G3-PCX results, as reported in [3].

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

4 Performance Analysis of Standard DE

DE algorithm presented in section 2.5 belongs to the DE family of Storn and Price [9]. The
family comprises of 10 different Generation strategies. Based on preliminary experiments we
found strategy 1 to yield overall best performance. According to this strategy new solutions
are created around the previous generation’s best solution (step a in Generation, Figure 3).
This feature of generating solutions around the best population member is desirable in solving
unimodal problems and also done in G3-PCX [3], hence it is no surprise that strategy 1 was the
best performer. In remainder of this paper, DE with strategy 1 is employed for simulations and
referred to as standard DE. We performed a parametric study on standard DE for M , CR and
F , and found M = 50, CR = 0.95 and F = 0.7, as optimal values with respect to all the three
test problems. The results of standard DE are reported in Table 2.

5 Functional Analysis and Modification of Standard DE

One of the noticeable features of standard DE is elitism at the individual level i.e. a child is
compared with its base parent (i.e. the individual at the index corresponding to which child has
been created), and only the better of the two survives for the next generation. We modified
this Replacement scheme by always accepting the newly created child i.e. without carrying out
the parent-child comparison. This resulted in a significant performance degradation in all three
test problems with respect to both the metrics, indicating that elitism in DE by parent-child
comparison is key to its performance.

Next, we try two Selection schemes, Tournament and Random, instead of the usual serial
parent selection. The results are shown in Table 3 indicate that the alternate selection schemes
perform poorly compared to serial selection, and we conclude that deterministic serial approach
works most appropriately for DE.

The Generation scheme (Step a) in standard DE involves creation of a child around Xbest,t−1.
This approach of creating solutions around the best is particularly useful in solving problems
exibhiting unimodality, and the benchmark algorithm G3-PCX successfully exploits this property.

Table 2: Standard DE, “DE/best/1/exp” [9], F = 0.7, CR = 0.95, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 6,100 6,600 7,200 7,600 9,000 11,200 21,050(43) 29,500 33,850

with 10−1

S2 31,700 33,550 35,100 48,050 51,100 55,200 55,400(43) 63,350 69,350

with 10−20

6



Table 3: Standard DE with Random and Tournament selection, CR = 0.95, F = 0.7, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
Random Selection

S1 14,250 16,700 20,050 15,950 20,400 24,600 50,800(38) 56,900 64,500

with 10−1

S2 58,350 64,900 72,100 116,000 122,000 132,700 136,750(38) 147,050 158,900

with 10−20

Tournament Selection
S1 14,600 16,850 19,400 17,700 21,250 25,300 39,500(44) 52,950 66,650

with 10−1

S2 86,350 92,950 97,650 114,800 124,700 134,900 100,050(44) 114,850 132,300

with 10−20

Table 4: Standard DE + Best Update, F = 0.7, CR = 0.95, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 5,500 6,250 6,900 7,450 8,800 10,800 18,550(44) 24,350 29,000

with 10−1

S2 31,400 32,650 34,500 43,600 48,600 52,100 51,400(44) 56,750 62,400

with 10−20

A major difference between G3-PCX and the standard DE arises from the fact that former uses
the current best location in the population, whereas DE utilizes the previous generation’s best.
We incorporate this feature in standard DE by using Xbest instead of using Xbest,t−1, where Xbest

indicates the best known location so far. This is achieved by checking and updating Xbest after
every child creation. The results shown in Table 4 reflect an improved performance in all cases.
Thus, we conclude that creating solutions around Xbest is an effective strategy for standard DE
while solving unimodal problems.

We take the next step and observe a basic difference in steady state and generational models of
G3-PCX and standard DE. In standard DE a newly created child has to wait till next generation
before it can be selected as the index parent. We test the steady state version of standard DE
in which as soon as a child is created it is compared with its index parent. The index parent is
replaced if the child is better. Since the created child is compared with the index parent itself,
we refer this as Serial Parent Replacement. In another steady state version of standard DE, we
compare the created child with a randomly selected member of the population and carry out the
replacement. In this version even if the newly created child is inferior to the index parent, it has
a chance of surviving while being compared against a randomly chosen individual. The results
for both the steady state versions are shown in Tables 5.

Both the steady state versions show an improvement over standard DE (Table 2). The steady
state versions are also an improvement over the DE with Best Update except for the Fros. Between
the two versions, the Random Parent Replacement performs better compared to the Serial Parent
Replacement. Thus, we conclude that the steady state model is useful over the generational model,
and in particular Random Parent Replacement is more preferred strategy.

Now, we combine Best Update and Steady State (Random Parent Replacement) with standard
DE, results shown in Table 6. The performance of this modified DE turns out to be best so far.

Table 5: Standard DE + SteadyStateV ersions, CR = 0.95, F = 0.7, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
Standard DE + Steady State(Serial Parent Replacement)

S1 5,300 6,000 6,850 7,200 9,050 12,600 23,600(36) 28,950 35,850

with 10−1

S2 28,750 29,650 32,200 46,300 50,100 55,250 54,550(36) 60,950 70,850

with 10−20

Standard DE + Steady State(Random Parent Replacement)
S1 4,000 5,200 6,850 6,050 8,500 11,450 20,750(40) 29,750 37,200

with 10−1

S2 23,150 25,200 27,150 42,100 47,700 54,350 53,050(40) 66,300 76,900

with 10−20

7



Table 6: Standard DE + Best Update + Steady State(RPR), F = 0.7, CR = 0.95, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 3,800 4,350 5,150 5,500 7,150 9,600 15,050(38) 20,050 24,800

with 10−1

S2 20,350 21,700 24,200 36,350 40,550 44,350 40,850(38) 46,600 51,500

with 10−20

Table 7: Standard DE + Best Update + Steady State(RPR) + Mutation, CR = 0.95, F = 0.7,
Pm = 0.25.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 2,450 3,050 3,850 5,350 7,400 9,300 11,550(39) 19,450 24,600

with 10−1

S2 13,200 14,700 15,700 37,250 41,700 46,250 43,300(39) 52,900 61,150

with 10−20

Till now we have been successful in improving the performance of standard DE by borrowing
ideas, particularly Steady State and Best Update, from G3-PCX algorithm. This emphasizes
the fact that a better understanding of EOSs at the level of operators can be highly useful
in developing and enhancing other EOSs. At this stage, we also identify a mutation operator
proposed by [4] in context to development of efficient PSO for solving unimodal problems. In
short, the goal of this mutation operator is to probabilistically (Pm indicating the mutation
probability) perturb a newly created child randomly around the Best solution. This serves for
following two purposes: (a) to explicitly promote the diversity in the population, and (b) aid
search around the Best region. We combine the mutation operator with the best DE so far (Table
7) and show the results in Table 7. Pm is chosen as 0.25 as done in [4]. The results show a
definitive improvement on Felp and a mixed improvement on Fsch and Fros. Such trends reconcile
with those presented in [4]. The possible explanation for the improved performance on Felp lies
in the variable-separable and unimodal properties of this problem.

5.1 Elitist DE

The DE algorithms tested so far have used Parent-Child comparison (Serial or Random) strategy
for elite preservation, and discovered that Random Parent Replacement performed better com-
pared to Serial Parent Replacement. Even though Random Parent Replacement gives the newly
created child an opportunity to survive against a randomly chosen individual (even if it is not
superior compared to its base parent) it is still too restrictive in child preservation. Here, we
introduce a new way to preserve elite by combining the parent and child population and then
recovering 50% individuals from the population as parents for the next generation based on their
fitness values. This style of preserving elite solutions is adopted in NSGA-II (a widely popular
muti-objective genetic algorithm) [2]. We shall refer to this as Elitist DE. It should be noted
that all the components of Elitist DE are same as standard DE except for elite preservation,
and that it follows the generational model. Table 8 shows that the performance of Elitist DE
is superior than standard DE, with respect to both the metrics, on Felp and Fsch, and worse on
Fros. Since there is a performance enhancement on two test problems we test two previous ideas
of Best Update and Mutation, as present results in Tables 9 and 10. ‘Elitist DE with Best

Table 8: Elitist DE, CR = 0.95, F = 0.7, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 4,550 5,100 6,400 5,900 7,650 11,950 24,900 (39) 615,500 800,300

with 10−1

S2 22,000 24,150 27,950 39,200 46,300 55,050 4.51e-08 1.42e-03 3.99

with 10−20 DNC DNC DNC

8



Table 9: Elitist DE + Best Update, CR = 0.95, F = 0.7, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 3,200 4,200 5,050 4,700 6,250 8,300 15,400 (38) 19,350 23,200

with 10−1

S2 19,250 20,850 22,000 31,000 34,550 38,850 37,550 (38) 42,850 46,550

with 10−20

Table 10: Elitist DE + Best Update + Mutation, CR = 0.95, F = 0.7, M = 50.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
Pm=0.05

S1 2,900 3,800 4,250 5,350 6,100 8,450 9,800 (40) 19,050 24,650

with 10−1

S2 17,450 18,800 20,350 32,450 35,450 39,500 33,400 (40) 43,950 49,800

with 10−20

Pm=0.25
S1 2,300 2,700 3,450 4,900 6,400 8,050 10,650 (37) 19,500 24,900

with 10−1

S2 12,500 13,550 15,250 32,750 36,350 38,950 39,100 (37) 51,540 57,000

with 10−20

Update’ performs better in all cases than without Best Update, and also shows convergence with
S2 criteria. On comparing ‘Elitist DE with Best Update’ and ‘standard DE with Best Update’
(Table 2), we find Elitist DE to be the clear winner in all cases. As a final step we also include
mutation in ‘Elitist DE with Best Update’ and show results for different values of Pm, 0.05 and
0.25, Table 10. On Felp, mutation with both the Pm values yield an improved performance. For
Fsch and Fros results with mutation are mixed in nature. However, a better performance on these
two functions is obtained with Pm = 0.05 than compared to Pm = 0.25.

5.2 PCX Based DE

The overall best performance from all the modified DEs is compared against G3-PCX in Table
11, and the DE performances are unable to match-up with those of G3-PCX. While facing a
similar predicament with PSO, in [4], authors successfully introduced a parent-centric Generation
mechanism based on PCX operator and enhanced the PSOs performance, which we attempt
next. The step a of Generation, shown in Figure 3, is replaced by PCX operation in which child
is created around the best solution. More details on PCX operator can be found in [3]. Two
parameters required in PCX, σζ and ση, were taken as 0.1.

The PCX operation with standard DE (referred to as PCX-DE) failed to give any satisfactory
results. Following which we introduced Best Update strategy i.e. as soon as a new child was
created Xbest (location around which solutions are being created) was checked for updation. The
performance of ‘PCX-DE with Best Update’ was studied and it was found that a population size of
M = 100 and higher values of CR (taken here as 0.95) yielded an overall better performance. The
results were better than best-so-far DE results. We also tried mutation operator in conjunction
with DE-PCX and discovered a degradation in performance. This could be explained based on
the fact that mutation brings undesirable randomness into the child creation and destroys the
ellipsoidal distribution from PCX operation.

Next, we introduce the Steady State with Random Parent Replacement in DE-PCX with Best
Update and observe a slight improvement in few cases, Table 12. As a next step, the index

Table 11: G3-PCX and DE’s best-so-far performance.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
G3-PCX

S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

with 10−20

Best So Far in DE
S2 12,500 13,550 15,250 31,000 34,550 38,850 33,400(40) 43,950 49,800

with 10−20

9



Table 12: PCX-DE + Best Update + Steady State (RPR), F = 0.7, CR = 0.95, NP = 100.
Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 1,800 2,300 2,900 3,900 5,200 6,600 21,500(39) 24,500 31,100

with 10−1

S2 9,300 10,200 11,600 28,000 32,500 35,000 45,500(39) 55,300 66,500

with 10−20

Table 13: PCX-DE + Random Parent Selection + Best Update + Steady State (RPR), F = 0.7,
CR = 1.0, NP = 100.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 1,000 1,400 1,900 2,300 2,800 3,300 8,800(42) 11,700 14,400

with 10−1

S2 5,700 6,300 6,900 13,700 15,200 16,500 19,500(42) 23,800 27,800

with 10−20

parent was selected randomly as opposed to being being selected serially. Random selection of
index parent further improved the performance but still did not take it closer to G3-PCX. At this
point we increased the value of CR to 1.0 and achieved a performance similar to that of G3-PCX,
Table 13.

6 Conclusion

Drawing concepts from existing literature, this paper makes a novel attempt in developing a unified
approach towards Evolutionary Optimization Systems. The key steps required for describing an
EOS are Initialization, Selection, Generation and Replacement. The central focus of this study is
then to improve the performance of standard DE on the class of unimodal problems by identifying
modifying its key steps– Selection, Generation and Replacement. Drawing principles from G3-
PCX, a benchmark algorithm, key steps in DE are modified one-by-one. At each stage certain
degree of performance improvement is obtained. Finally, PCX operation is introduced in standard
DE along with the other alterations, and the performance is comparable to G3-PCX. Although,
the modified DE is algorithmically equivalent to G3-PCX, the study suggests how two seemingly
different algorithms can be converted from one into another by modifying the key steps. Such a
study should enable researchers in Evolutionary Computation to adopt unified approach towards
evolutionary algorithms and work towards identifying the properties of key steps, useful in order
to develop efficient EAs for any given task.

References
[1] K. Deb. A Population-Based Algorithm-Generator for Real-Parameter Optimization. KanGAL Report Number 2003003.

[2] K. Deb, S. Agarwal, and T. Meyarvian. A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[3] K. Deb, A. Annand, and D. Joshi. A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput.,
10(4):371–395, 2002.

[4] K. Deb and N. Padhye. Development of efficient particle swarm optimizers by using concepts from evolutionary algorithms. In Proceedings
of the 2010 GECCO conference companion on Genetic and evolutionary computation, pages 55–62, New York, NY, USA. ACM.

[5] D. B. Fogel. An evolutionary approach to the traveling salesman problem. Biological Cybernetics, 60, 1988.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York, 1989.

[7] J. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, MI, 1975.

[8] Kenneth A. De Jong. Evolutionary Computation: A Unified Approach. MIT Press, 2006.

[9] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: a practical approach to global optimization. Springer-
Verlag, Hiedelberg, 2005.

[10] H.-P. Schwefel. Projekt MHD-Staustrahlrohr: Experimentelle optimierung einer zweiphasenduese, TTeil I. Technical Report 11.034/68, 35,
AEG Forschungsinstitut, Berlin.

10


